期刊文献+

基于聚类方法的医疗费用数据挖掘研究 被引量:2

Clustering method is applied to the medical records data analysis research
原文传递
导出
摘要 目的医院病案库内数据正大幅增长,但缺乏数据的集成和分析,更谈不上对医学决策和知识的自动获取,为进一步探索和研究住院病人年龄与平均住院日及平均住院费用之间的联系。方法我们使用K-means聚类算法,对医院病案库信息系统中病人年龄、住院时间、住院医疗费用数据进行挖掘,分析内在联系,寻找规律。结果发现30-60岁的住院时间较短,15天以下,但日平均费用并不低,150元以上。而当住院天数超过30天,日平均费用降低至150元以下。说明医疗保险政策还有潜力可挖。结论可以建立一套完整的、合理的、适用的、医疗治疗体制外的保健、保养政策和机构,尽可能的缩短病人平均住院日,降低医院日平均消耗,加大危险期、急性期病情费用的投入,待病人病情稳定后转入相应的保健、保养机构继续调理。 Objective Hospital medical record data inside the library, is the hospital information priority among priorities. But most hospitals on the medical record repository database processing lack of data integration and analysis, not to mention the medical decision making and the automatic acquisition of knowledge, to further explore and study in hospitalized patients age and average hospitalization days and the average hospitalization expenses between contact. Methods We used the K-means clustering algorithml, the hospital medical record repository information system in the age of the patient, the medical expense of hospitalization time, data mining, analysis of immanent connection, to find the law. Results It was found that 30-60, a shorter hospital stay, but the average cost is not low,below 150, and daily average cost below 150 when patient stay in hospital over 30 days, illustrate the medical insurance policy still has the potential to be excavated. Conclusion The country should establish a set of complete, reasonable, applicable, medical treatment and health care system, maintenance policy and mechanism, so as to shorten the average length of stay in hospital, reduce the hospital daily average consumption, and increased health care maintenance mechanism, investment, increase the dangerous period, investment in the acute phase of the illness, the patients in stable condition after the corresponding health maintenance organizations, to continue to adiust.
出处 《中国病案》 2014年第10期66-68,共3页 Chinese Medical Record
基金 海军总医院创新培育基金(CXPY201306)
关键词 K-MEANS聚类 医疗费用 数据挖掘 K-meansclustering Medical expenses Datamining
  • 相关文献

参考文献4

二级参考文献17

  • 1袁世宏,王天芳.多元统计方法在建立证候诊断模型研究中存在问题的思考[J].北京中医药大学学报,2004,27(4):9-11. 被引量:26
  • 2www.moh. gov. cn.
  • 3Feng Yi, Wu Zhaohui, Zhou Xuezhong, et al. Knowledge discovery in traditional Chinese medicine: State of the art and perspectives. Artificial Intelligence in Medicine, 2006,38 : 219 -236.
  • 4Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In : Wermter S, Riloff E, Scheler G, editors. The Fourteenth International Joint Conference on Artificial Intelligence (IJCAI) San Francisco. CA: Morgan Kaufman,1995:1137 - 1145.
  • 5Platt J. ast Training of Support Vector Machines using Sequential Minimal Optimization. Advances in Kernel Methods-Support Vector Learning// Schoelkopf B, Burges C, Smola A, eds. America: MIT Press, 1998.
  • 6Chang cc,Lin CJ. LIBSVM : a library for support vector machines, 2001. Software available at http://www.csie. ntu. edu. tw/-cjlin/libsvm.
  • 7Freund Y, Mason L. The alternating decision tree learning algorithm. Proceeding of the 16th International Conference on Machine Learning. Bled, Slovenia: 1999:124 - 133.
  • 8Ross Quinlan: C4.5: Programs for Machine Learning”. San Marco, CA: Morgan Kaufmann Publishers, 1993.
  • 9Leo Breiman: Random Forests. Machine Learning , 2001,45 (1):5-32.
  • 10燕忠生,李恒谋,周进茂,何军华.114例初诊为慢性胃炎患者的临床资料分析[J].甘肃中医学院学报,1999,16(4):27-29. 被引量:3

共引文献79

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部