期刊文献+

基于遗传算法的多核芯片并发追踪调试方法 被引量:1

A concurrent trace debugging method for multi-core chip based on generic algorithm
原文传递
导出
摘要 基于追踪的调试技术将追踪信号连接到追踪缓存,这些连接设施不仅占用有限的片上资源,全局连线还可能导致信号完整性问题.一种有效的解决方案是复用片上网络传输追踪数据.复用片上网络传输多组并发追踪信号,需要确定追踪缓存数量和放置位置以满足链路带宽的约束,同时实现传输功耗最小化.本文将该问题规约为NP难约束P-Median问题,并提出了一种基于遗传算法的多追踪缓存选址方法.在片上网络链路带宽的约束下,优化追踪缓存选址数和追踪数据传输能耗,为多组并发追踪信号的实时追踪提供了一种有效方法.实验结果表明,在同等约束条件下,多缓存能够有效提高追踪信号数量.相比于以前的研究结果,本文方法能够有效地减少缓存选址数和降低追踪数据传输能耗. Trace-based debugging technologies need connect trace signals to trace buffer with additional infrastructure, which not only consumes the limited on chip resource, but also results in the problem of signal integration. Reusing network-on-chip eliminates the problems. But it is still a challenge problem that how to determine the locations of trace buffer under the limitations of link bandwidth and transmission power. We formulate it as P-Median problem which is NP-hard. Then a method based on generic algorithm is proposed. It can optimize the location number of trace buffers and transmission power simultaneously. Experimental results show that multiple trace buffer locations can increase the number of concurrent trace signals in contrast to centralized trace buffer. Compared to previous method, the proposed method can deducing the locations of trace buffer and reducing the transmission power efficiently.
出处 《中国科学:信息科学》 CSCD 2014年第10期1253-1263,共11页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61106036 61272147) 湖南省战略性新兴产业重大科技攻关计划(批准号:2012GK4054) 计算机体系结构国家重点实验室开放课题(批准号:CARCH201202)资助项目
关键词 多核 片上网络 硅后调试 并发追踪 多缓存 multi-core, network-on-chip, post-silicon debugging, concurrent trace, trace buffer
  • 相关文献

参考文献11

  • 1钱诚,沈海华,陈天石,陈云霁.超大规模集成电路可调试性设计综述[J].计算机研究与发展,2012,49(1):21-34. 被引量:3
  • 2Su M, Chen Y, Gao X. A general method to make multi-clock system deterministic. In: Proceedings of IEEE/ACM Design, Automation and Test in Europe Conference (DATE), Dresden, 2010. 1480-1485.
  • 3Josephson D. The good, the bad, and the ugly of silicon debug. In: Proceedings of the 43rd Design Automation Conference (DAC), New York, 2006. 3-6.
  • 4Kanad B, Prabhat M. RATS: restoration-aware trace signal selection for post-silicon validation. IEEE Trans VLSI Syst, 2013, 21: 605-613.
  • 5Ko H F, Nicolici N. Algorithms for state restoration and trace-signal selection for data acquisition in silicon debug. IEEE Trans Comput Aid Design, 2009, 28: 285-297.
  • 6Liu X, Xu Q. On multiplexed signal tracing for post-silicon validation. IEEE Trans Comput Aid Design, 2013, 32: 748-759.
  • 7Anis E, Nicolici N. On using lossless compression of debug data in embedded logic analysis. In: Proceedings of IEEE International Test Conference, Santa Clara, 2007. 1-10.
  • 8Gao J L, Wang J X, Han Y H, et al. A clustering-based scheme for concurrent trace in debugging NoC-based multicore systems. In: Proceedings of IEEE/ACM Design, Automation and Test in Europe Conference (DATE), Dresden, 2012. 27-32.
  • 9Xiang D, Zhang Y. Cost-effective power-aware core testing in NoCs based on a new unicast-based multicast scheme. IEEE Trans Comput Aid Design, 2011, 30: 135-147.
  • 10Sherali H D, Nordai F L. NP-hard, capacitated, balanced p-median problems on a chain graph with a continuum of link demands. Math Oper Res, 1988, 13: 32-49.

二级参考文献69

  • 1Josephson D. The good, the bad, and the ugly of silicon debug [C] //Proc of Design Automation Conference 2006. New York: ACM, 2006:3-6.
  • 2Paniccia M, Eiles T M, Rao V R M, et al. Novel optical probing technique for flip chip packaged microprocessors [C]//Proc of Int Test Conf 1998. Piscataway, NJ: IEEE, 1998: 740-747.
  • 3Rowlette J A, Eiles T M. Critical timing analysis in microprocessors using near-IR laser assisted device alteration (LADA)[C] //Proc of Int Test Conf 2003. Piscataway, NJ: IEEE, 2003: 264-273.
  • 4Knebel D, Sanda P, Manus M M C, et al. Diagnosis and characterization of timing-related defects by time-dependent light emission [C] //Proc of Int Test Conf 1998. Piscataway, NJ: IEEE, 1998: 733-739.
  • 5Livengood R H, Medeiros D. Design for (physical) debug for silicon microsurgery and probing of flip-chip packaged integrated circuits [C] //Proc of Int Test Conf 1999. Piscataway, NJ: IEEE, 1999:877-882.
  • 6Josephson D D. The manic depression of microprocessor debug[C]//Proc of Int Test Conf 2002. Piscataway, NJ: IEEE, 2002:657-663.
  • 7Beers R. Pre-RTL formal verification: An Intel experience [C] //Proe of Design Automation Conference 2008. New York: ACM, 2008: 806-811.
  • 8Ng K. Challenges in using system-level models for RTL verification [C] //Proc of Design Automation Conf 2008. New York: ACM, 2008:812-815.
  • 9Silas I, Frumkin I, Hazan E, et al. System-level validation of the Intel pentium M processor [J] Intel Technical Journal, 2003, 7(2): 1-9.
  • 10Joint Test ActionGroup (JTAG). IEEE Standard Test Access Port and Boundary-Scan Architecture [SJ. Piscataway, NJ:IEEE, 1990.

共引文献2

同被引文献10

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部