期刊文献+

基于声表面波微液滴并行加热研究

Heating Droplets in Parallel Using Surface Acoustic Wave
下载PDF
导出
摘要 提出了一种并行加热微液滴的方法。在128°旋转Y切割X传播方向的LiNbO3压电基片上采用微电子工艺制作叉指换能器和反射栅,在其声路径上贴合环形聚二甲基硅氧烷(PDMS)微槽,其内充满石蜡油微流体。设计有多个受热区的图案,经过激光切割转移到导热性良好的、厚度为0.3 mm的铜金属传热片上,并放置于PDMS微槽上。射频电信号加到叉指换能器上激发声表面波,辐射入微槽中的石蜡油微流体,并将能量通过传热片传递到受热区,进而加热受热区上的微液滴。以纯净水微液滴为实验对象,进行了多个微液滴并行加热实验。结果表明,在单个叉指换能器上加电信号激发的声表面波可同时加热多个微液滴,且其温度变化值随射频电信号功率增加而增加,同时,微液滴体积和受热区中并行加热的微液滴数影响其温度变化。 A new method for heating droplets in parallel was presented. An interdigital transducer and a reflector were fabricated on a 128°; yx-LiNbO3 substrate using microelectrical technology. A poly( dimethylsiloxane) microcell filled with mineral oil was mounted on the piezoelectric substrate. A pattern with multi heating zones was designed and transferred to a copper sheet with the thickness of 0.3 millimeters using laser cutting. The copper sheet was then placed on the microcell with mineral oil. Surface acoustic wave was generated by applying an electrical signal to the interdigital transducer,and the acoustic energy was radiated into the mineral oil. Droplets on the heating zones at the end of the copper sheet were then heated due to heat transfer. Experiments results show that multi droplets can be heated in parallel,and their temperature variation is increased with the electrical signal power. The volume and the number of droplets to be heated in parallel do also affect their temperature variation.
作者 章安良 查燕
出处 《传感技术学报》 CAS CSCD 北大核心 2014年第9期1221-1225,共5页 Chinese Journal of Sensors and Actuators
基金 浙江省科技厅资助项目(2009R50025) 宁波市自然基金资助项目(2011A610108)
关键词 声表面波 微液滴 叉指换能器 辐射 并行加热 surface acoustic wave droplets interdigital transducer radiation heating in parallel
  • 相关文献

参考文献17

  • 1Mara M, Massimo G, Elisa M, et al. Recent Advancements in Chemical Luminescence-Based Lab-on-Chip and Microfluidic Plat- forms for Bioanalysis [ J ]. Journal of Pharmaceutical and Biomedical Analysis,2014,87 ( 1 ) : 36-52.
  • 2张端,汪甜,高岩,何熊熊.高回流被动式微混合器设计及数值模拟[J].传感技术学报,2013,26(11):1621-1626. 被引量:4
  • 3Ghanbari M, Nezhad A S, Agudelo C G, et al. Microfluidic Positio- ning of Pollen Grains in Lab-on-a-Chip for Single Cell Analysis [J]. Journal of Bioscience and Bioengineering, 2014, 117 (4) : 504-511.
  • 4彭露,朱红伟,杨旻,国世上.微沟道内两相流速比对液滴形成的影响[J].传感技术学报,2010,23(9):1232-1235. 被引量:3
  • 5王艳,吴斌,张晓燕,沈崇钰,张睿,李丽花,费晓庆,赵增运.示差折光-液相色谱法测定蜂蜜中β-呋喃果糖苷酶残留量[J].分析化学,2012,40(10):1602-1606. 被引量:11
  • 6Kasi B M, Mohammad R H, Prashanta D. Thermal Analysis of Mi- crowave Assisted Bonding of Poly( Methyl Methacrylate)Substrates in Microfluidic Devices[ J]. International Journal of Heat and Mass Transfer,2013,58(1-2) :229-239.
  • 7戴敬,樊晓峰.王世立,等.基于ITO玻璃的微流控芯片系统温度控制装[C]//武汉:第三届全国徽全分析系统学术会议论文集,2005.
  • 8Schler L, Lange B, Seibel K, el al. Monolithically Integrated Micro Flow Sensor fir Lab-on-Chip Applications[ J ]. Microeleetronic En- gineering, 2005,78-79( 5 ) : 164-170.
  • 9Tsai C Y,Chmlg T L,Chen C C,et al. An Ultra Sensitive DNA De- tection by Using Gold Nanoparticle Multilayer in Nano-Gap Elec- trodes [ J ]. Microelectronic Engineering, 2005,78-79 ( 3 ) :546-555.
  • 10Hsieh T M,Luo C H, Humlg F C,et al. Enhmlcemen| of Thermal U-niformity for a Microthermal Cycler and Its Application for Polymer- ase Chain Reaction [ J ]. Sensors and Actuators B, 2008, 130 (2) : 848-856.

二级参考文献23

  • 1Whitesides G M.The Origins and the Future of Microfluidics[J].Nature,2006(442):368-373.
  • 2Huang K S,Lai T H,Lin Y C.Droplet Microfluidics[J].Lab Chip,2006(6):954-957.
  • 3Joanicot M,Ajdari A.Droplet Control for Microfluidics[J].Science,2005(309):887-888.
  • 4Olsson E,Kreiss G.A Conservative Level Set Method for two Phase Flow II[J].Comput.Phys,2007(225):785-807.
  • 5Sethian J A Level.Set Methods and Fast Marching Methods[R].Cambridge,Cambridge University Press,1999.
  • 6Cristini V,Tan Y C.Theory and Numerical Simulation of Droplet Dynamics in Complex Flows-a review[J].Lab Chip,2004(4):257-264.
  • 7林炳承,秦建华.微流控芯片实验室[M].北京:科学出版社,2006:18,34.
  • 8易松强. 蜂蜜中β-葡萄糖苷酶的研究, 浙江大学硕士学位论文, 2011.
  • 9AOAC Official Method 998.12, C-4 Plant sugars in Honey Internal Standard Stable Carbon Isotope Ratio Method Fist Action 1998, AOAC standard.
  • 10AOAC Official Method 991.41, C-4 Plant Sugars in Honey Internal Standard Stable Carbon Isotope Ratio Method Fist Action 1991 Final Action 1996, AOAC Standard.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部