期刊文献+

气体等离子体与水溶液的相互作用研究——意义、挑战与新进展 被引量:31

Researches on the Interaction Between Gas Plasmas and Aqueous Solutions: Significance, Challenges and New Progresses
下载PDF
导出
摘要 大气压冷等离子体在环境保护、生物医学、纳米制造等领域具有广阔的应用前景。这些应用中,被处理物常常处于水环境中,气体等离子体与水溶液的相互作用是影响应用效果的关键因素。虽然人们对等离子体本身开展了大量研究,但所获知识难以延伸到水溶液中,对上述相互作用的探究尚处于起步阶段。特别是等离子体产生的活性粒子如何传质进入水溶液,如何在水溶液中转化,以及最终作用到被处理物的是什么组分等科学问题,尚缺乏定量解析;理论知识的欠缺限制了对活性粒子成分与剂量的准确调控,严重阻碍了应用的发展。气体等离子体与水溶液相互作用已经成为当前国际等离子体界最热门的研究课题之一,为此综述了该方向的研究现状、关键科学问题与最新研究进展,以期促进相关的研究工作。 The cold atmospheric-pressure plasmas have great application prospects in the fields of environmental protec-tion, biomedicine, nanotechnology, et al. In such applications, the targets to be treated by plasmas are often immersed inaqueous solutions, therefore, the interaction between gas plasma and aqueous solution plays the dominant role. Although agreat amount of researches have been launched for gas plasmas, the interaction of these gas plasmas with aqueous solu-tions is hardly focused on. Particularly, how do reactive species transfer into aqueous solutions, what chemicalconversions happen in the solutions, and finally which species can act on the targets? These are still open questions espe-cially in quantitative level. Since the composition and dosage of reactive species acting on the treated targets are crucialfor the effect of applications, the lack of scientific cognition limits the industrial development. The interaction betweengas plasma and aqueous solution is now the hot spot in the research field of plasmas internationally, thus, we review itsresearch status, key scientific problems, and new progresses so as to benefit the relevant researches.
出处 《高电压技术》 EI CAS CSCD 北大核心 2014年第10期2956-2965,共10页 High Voltage Engineering
基金 国家自然科学基金(51307134) 电力设备电气绝缘国家重点实验室主任基金(EIPE14123)~~
关键词 大气压冷等离子体 活性粒子 气体等离子体 水溶液 相互作用 气液两相传质 cold atmospheric-pressure plasma reactive species gas plasma aqueous solution interaction gas-liquidmass transfer
  • 相关文献

参考文献68

  • 1Kong M G, Kroesen G, Morrill G, et al. Plasma medicine: an introductory review[J]. New Journal of Physics, 2009, 11(11): 115012.
  • 2Foster J, Sommers B S, Gucker S N, et al. Perspectives on the interac- tion of plasmas with liquid water for water purification[J]. IEEE Transactions on Plasma Science, 2012, 40(5): 1311-1323.
  • 3Mariotti D, Patel J, Svrcek V, et al. Plasma-liquid interactions at at- mospheric pressure for nanomaterials synthesis and surface engineering[J]. Plasma Processes and Polymers, 2012, 9(11): 1074-1085.
  • 4Babaeva N Y, Kushner M J. Reactive fluxes delivered by dielectric barrier discharge filaments to slightly wounded skin[J]. Journal of Physics D: Applied Physics, 2013, 46(2): 025401.
  • 5Samukawa S, Hori M, Rauf S, et al. The 2012 plasma roadmap[J]. Journal of Physics D: Applied Physics, 2012, 45(25): 253001.
  • 6Chen C, Liu D X, Liu Z C, et al. A model of plasma-biofilm and plasma-tissue interactions at ambient pressure[J]. Plasma Chemistry and Plasma Processing, 2014, 34(3): 403-441.
  • 7Liu D X, Iza F, Wang X H, et al. He+O2+H2O plasmas as a source of reactive oxygen species[J]. Applied Physics Letters, 2011, 98(22): 221501.
  • 8Sskiyama Y, Graves D B, Chang H W, et al. Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive nan- tral species[J]. Journal of Physics D: Applied Physics, 2012, 45(42): 425201.
  • 9Bruggeman P, Leys C. Non-thermal plasmas in and in contact with liquids[J]. Journal of Physics D: Applied Physics, 2009, 42(5):053001.
  • 10Graves D B. The emerging role of reactive oxygen and nitrogen spe- cies in redox biology and some implications for plasma applications to medicine and biology[J]. Journal of Physics D: Applied Physics, 2012, 45(26): 263001.

同被引文献523

引证文献31

二级引证文献384

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部