期刊文献+

低温等离子体反应器去除挥发性有机化合物的能效分析 被引量:14

Energy Efficiency Analysis of Nonthermal Plasma Reactor for VOCs Decomposition
下载PDF
导出
摘要 为了推动等离子体技术早日商业应用,提高低温等离子体技术的能量效率,本研究采用白行研制优化的管.线式反应装置,考察了不同介质填料、电场强度E、污染物入口质量浓度P0和气流速度v等参数对反应器能量效率ξ的影响。希望通过优化实验参数,可以在保证污染物降解率叩的同时有效提高ξ。实验结果表明,随着污染物v的增加,ξ呈现先增大后减小的趋势;随着P0的增加,ξ呈现先增大后减小的趋势;η和ξ由高到低依次均表现为复合催化剂、B008Sr02Zr01Ti0.903、Mn02/7-A1203、Y-A1203和无填料。因此,在本实验条件下,v为2mL/min,P0范围在1500-2000mg/m0,E在9.6kV/cm左右,填料为复合催化材料,可得到最佳ξ为10g/(kW-h)。研究为等离子体技术的发展提供了新的思路,为该技术的商业应用提供了借鉴。 To increase the energy efficiency of non-thermal plasma technology and hence to promote the technology inVOC decomposition applications, we used a homemade pipe-line plasma reactor to examine the influence of some para-meters (including the different medium packing, electric field strength E, the pollutant inlet concentration Po and gasvelocity v, and so on) on the reactor energy efficiency ( and tried to find an optimum combination of the parameters toincrease ( under the precondition of keeping certain toluene removal efficiency r/. According to the experiments, ( in-creases firstly and then decreases with increasing v, while (increases firstly and then decreases with increasing p0. Both and (decrease successively according to the sequence of using complex catalyst, Bao.8Sro.2Zro.lTio.903, MnO2/y-A1203,y-A1203 as the packing and no packing at all. In our device, a specific experimental condition, namely v of 2 mL/min, Poin the range of 1500-2000 mg/m3, E at the 9.6 kV/cm, and loaded with packing of composite catalytic materials, can helpto get the best energy efficiency, 10 g/(kW.h). The results could be used as a reference for further application developments.
出处 《高电压技术》 EI CAS CSCD 北大核心 2014年第10期2986-2990,共5页 High Voltage Engineering
基金 国家自然科学基金(51108453) 新世纪优秀人才支持计划(NCET120967) 国家留学基金(2011811005) 北京市优秀人才培养项目(2012ZG81) 中央高校基本科研业务费专项基金(2009QH03)~~
关键词 能量效率 等离子体 反应器 入口质量浓度 气流速度 电场强度 energy efficiency plasma reactor input concentration gas velocity electric field strength
  • 相关文献

参考文献21

  • 1Carlos M N, Geddes H R, Wade H P, et al. Corona destruction: an innovative control technology for VOCs and air toxics[J]. Journal of Air and Waste Management Association, 1993, 43: 242-247.
  • 2竹涛,李坚,何绪文,徐东耀,舒新前,梁文俊,金毓峑.吸附增效/催化-低温等离子体技术降解甲苯废气[J].高电压技术,2009,35(11):2764-2769. 被引量:6
  • 3王慧娟,李杰.脉冲放电等离子体水处理体系中·OH的作用[J].高电压技术,2013,39(7):1698-1702. 被引量:18
  • 4竹涛,李坚,梁文俊,金毓峑.高频介质阻挡放电降解甲苯的实验研究[J].高电压技术,2009,35(2):359-363. 被引量:14
  • 5Zhu T, Li J, Jin Y Q, et al. Gaseous phase benzene decomposition by non-thermal plasma coupled with nano-titania catalyst [J]. Internation- al Journal of Environmental Science and Technology, 2009, 6 (1): 141-148.
  • 6Durme J V, Dewulf J, Leys C, et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review[J]. Ap- plied Catalysis B: Environmental, 2008, 78:324-331.
  • 7Suhrahmanyam Ch, Renken A, Kiwi-Minsker L. Novel catalytic non-thermal plasma reactor for the abatement of VOCs[J].Chemical Engineering Journal, 2007,134: 78-84.
  • 8Zhu T, Li J, Jin Y Q, et al. Decomposition of benzene by non-thermal plasma processing: photo catalyst and ozone effect [J]. International Journal of Environmental Science and Technology, 2008, 5(3): 375-384.
  • 9竹涛,万艳东,李坚,徐东耀,舒新前,何绪文,梁文俊,金毓,方岩.低温等离子体-催化耦合降解甲苯的研究及机理探讨[J].高校化学工程学报,2011,25(1):161-167. 被引量:19
  • 10魏林生,董围攀,章亚芳,等.SF6对介质阻挡放电臭氧生成的影响[J].高电压技术,2013,39(12):2520-2525.

二级参考文献84

  • 1鹿院卫,王丁会,盛建平,马重芳.NTP协同光催化降解甲醛的实验研究[J].北京工业大学学报,2009,35(5):664-668. 被引量:4
  • 2邵建设,严萍.高频高压交流电源应用于介质阻挡放电特性的研究[J].高电压技术,2006,32(3):78-80. 被引量:19
  • 3吴祖良,高翔,骆仲泱,倪明江,岑可法.自由基簇射电催化氧化同时脱硫脱硝过程反应特性及机理研究[J].高校化学工程学报,2006,20(6):925-931. 被引量:10
  • 4王方铮,李杰,吴彦,王慧娟,李国锋.高压脉冲放电等离子体溶液中苯酚的降解[J].高电压技术,2007,33(2):124-127. 被引量:18
  • 5徐学基 诸定昌.气体放电物理[M].上海:复旦大学出版社,1995..
  • 6Zhu Tao, Li Jian, Jin Yuquan, et al. Decomposition of benzene by non-thermal plasma processing: photoeatalyst and ozone effect[J]. International Journal of Environmental Science and Technology, 2008, 5(3): 375-384.
  • 7Yamamoto. Methods and apparatus for controlling toxic compounds using catalysis-assisted non-thermal plasma[J]. Environmental International, 1997, 23 (6) : 3.
  • 8Zhu Tao, Li Jian, Jin Yuquan, et al. Gaseous phase benzene decomposition by non-thermal plasma coupled with nano-titania catalyst[J]. International Journal of Environmental Science and Technology, 2009, 6 (1): 141-148.
  • 9Vladimir Demidiouk, Jae Ou Chae. Decomposition of volatile organic compounds in plasma- catalytic system[J]. IEEE Transactions on Plasma Science, 2005,33(1): 157-161.
  • 10Duan Li; Daisuke Yakushiji, Seiji Kanazawa, et al. Decomposition of toluene by using a streamer discharge reactor combined with catalysts[J]. J Adv Oxid Technol, 2003, 6(1) : 75-79.

共引文献78

同被引文献289

引证文献14

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部