期刊文献+

温升效应对介质阻挡放电诱导速度和涡量的影响 被引量:6

Effect of Temperature Rise on Velocity and Vorticity Induced by Dielectric Barrier Discharge
下载PDF
导出
摘要 表面介质阻挡放电等离子体同时存在力、热两种效应传递能量,为研究热效应对等离子体激励诱导流场的影响,通过求解带有体积力源项和热量源项的Navier-Stokes方程,建立了综合考虑动量效应和温升效应的介质阻挡放电物理模型,并对比分析了有、无温升效应时的速度场和涡量场。计算结果表明:同一时刻考虑温升效应时的诱导速度大于未考虑时的诱导速度,并且随激励时间的增长更为显著;在50 ms时考虑温升效应的诱导速度高出未考虑时诱导速度的9.5%;非定常激励下,温升效应对等离子体激励诱导涡量的大小产生显著影响,与无温升效应相比,等离子体激励作用期间的正涡涡量增大10%,负涡涡量增大5%,等离子体激励未作用期间温升效应加速了涡的耗散。 Surface dielectric barrier discharge plasma transfers energy by the form of force and heat. In order to researchthe effect of heat on the flow induced by plasma actuation, taking the temperature rise effect and the momentum effect in-to consideration, we established a model of AC dielectric barrier discharge by solving Navier-Stokes equations coupledwith force and heat sources. The velocity and vorticity fields were analyzed to study the effect of temperature rise. Thenumerical results show that temperature rise will increase the induced velocity, and this increment becomes larger with theincrease of actuation time. The induced velocity with temperature rise effect is 9.5% larger than that without temperaturerise effect at 50 ms. The temperature rise effect has a tremendous effect on vorticity: compared with the vorticity withouttemperature effect, the positive vorticity with temperature effect is 10% larger and the negative vorticity is 5% larger; be-sides, the temperature effect accelerates the dissipation of vorticity.
出处 《高电压技术》 EI CAS CSCD 北大核心 2014年第10期3038-3045,共8页 High Voltage Engineering
基金 国家自然科学基金(51207169 51276197 61108068)~~
关键词 介质阻挡放电 等离子体 体积力 温升效应 诱导速度 诱导流场 dielectric barrier discharge plasma body force temperature rise effect induced velocity induced flow field
  • 相关文献

参考文献16

二级参考文献168

共引文献179

同被引文献87

  • 1何立明,蒋永健,康强,朱艳.利用上游斜坡改善气膜冷却效率的数值研究[J].推进技术,2009,30(1):9-13. 被引量:9
  • 2张攀峰,刘爱兵,王进军.非定常等离子激励器诱导平板边界层的流动结构[J].中国科学:技术科学,2011,41(4):482-492.
  • 3Roth J R, Sherman D M, Wilkinson S E Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma[R]. Reno,USA: AIAA, 1998:0328.
  • 4Satn M, Asada K, Nonomura T, et al. Effective mechanisms for turbulent-separation control by DBD plasma actuator around NACA0015 at Reynolds Number 1600000[C]//7~' AIAA Flow Control Conference. [S.I.]: AIAA, 2014: 2663.
  • 5Houser N M, Gimeno L, Hanson R E, et al. Micro-fabrication of dielectric barrier discharge plasma actuators for flow control[J]. Sensors and Actuators A: Physical, 2013, 201(12): 101-104.
  • 6Daniel K V N, Thomas C C, Scott C M. Tip clearance flow control in a linear turbine cascade using plasma actuation[R].F lorida, USA: AIAA, 2009:300.
  • 7Greenblatt D, Kastantin Y, Nayeri C N, et al. Delta wing flow control using dielectric barrier discharge actuators[J]. AIAA Journal, 2008, 46(6):1554-1560.
  • 8Andrey A S, Alexey D B, Anatoly A M, et al. Plasma control of vortex flow on a delta wing at high angles of attack[J]. Exp Fluids, 2013, 54(8): 1-12.
  • 9Jiang Li, Lei-Lei Yang, Bin Wang, et al. Airflow control by DBD actuator over an MDA airfoil[J]. IEEE Transactions on Plasma Science, 2014, 42(10):2820.
  • 10David M S, Flint O T. Turbulent boundary-layer separation control with single dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2010, 48(8): 1620-1634.

引证文献6

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部