期刊文献+

大气压脉冲调制射频氦气放电特性的数值模拟 被引量:3

Numerical Study on the Characteristics of Pulse Modulated Radio-frequency He Discharges at Atmospheric Pressure
下载PDF
导出
摘要 采用脉冲调制可以有效优化大气压射频放电行为。为此利用1维流体模型,考虑了氦等离子体放电过程中主要的13个反应及6种粒子,研究了大气压脉冲调制射频氦气放电特性,并分析了调制频率、占空比对放电特性的影响以及输入电压对达到最大电子数密度所需时间的影响。结果表明:脉冲调制之后,固定调制频率时,随着占空比的减小,氦气放电的击穿电压增大;固定输入电压时,最大电子数密度所需时间与剩余电子数密度成反比。利用功率输入时间及最大电子数密度所需时间的关系,合理选择占空比及调制频率可以在满足实际应用的同时,最大地节约功率损耗;固定占空比及调制频率时存在着最优输入电压,使得最大电子数密度所需时间最短。 Using pulse modulation can effectively improve atmospheric radio-frequency discharges. Hence , using aone-dimensional fluid model and taking 13 key reactions and 6 species of pure He discharge into consideration, we inves-tigated the characteristics of pulse modulated radio-frequency He discharge, and discussed the relation between themodulation's frequency and duty cycle and the discharge characteristics, as well as the influence of the input voltage onthe time required to reach the maximum electron density. The results show that when the modulation frequency is fixed,the breakdown voltage increases with increasing duty cycle. When the input voltage is fixed, the time required for maxi-mum electron density is inversely proportional to residual electron density. Hence, according to relationship betweenpower-off period and required time for maximum electron density in consideration, a reasonable selection of modulationfrequency and duty cycle can greatly reduce power consumption while satisfying application requirements. Likewise, ifthe duty cycle and modulation frequency are fixed, there is an optimal input voltage which can minimize the required timefor maximum electron density, and a reasonable input voltage helps to improve the discharge characteristics.
出处 《高电压技术》 EI CAS CSCD 北大核心 2014年第10期3105-3111,共7页 High Voltage Engineering
基金 国家高技术研究发展计划(863计划)(2014AA052003)~~
关键词 脉冲调制 大气压射频放电 气体放电 等离子体 调制频率 占空比 pulse modulation radio-frequency discharge at atmospheric pressure gas discharge plasma modulationfrequency duty cycle
  • 相关文献

参考文献28

  • 1Park J, Hanins I, Herrmann H W, et al. Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source[J]. Journal of Applied Physics, 2001, 89: 20-28.
  • 2Fridman G, Friedman G, Gutsol A, et al. Applied plasma medicine[J]. Plasma Processes and Polymers, 2008, 5(6): 503-533.
  • 3Sharma A, Pruden A, Start O, et al. Bacterial inactivation using an RF-powered atmospheric pressure plasma[J]. IEEE Transactions on Plasma Science, 2006, 34(4): 1290-1296.
  • 4Roth R. Industrial plasma engineering[M]. Bristol: Institute of Physics Publishing, 1995.
  • 5Kunhardt E E. Generation of large-volume, atmospheric-pressure no equilibrium plasmas[J]. IEEE Transactions on Plasma Science, 2000,28(1): 189-200.
  • 6Kong M G, Kroesen G, Morrill G, et al. Plasma medicine: an introduc- tion review[J]. New Journal of Physics, 2009, 11: 115012-115035.
  • 7卢新培,严萍,任春生,邵涛.大气压脉冲放电等离子体的研究现状与展望[J].中国科学:物理学、力学、天文学,2011,41(7):801-815. 被引量:76
  • 8Kwon H C, Won I H, Lee J K. Electron heating mode transition in- duced by ultra-high frequency in atmospheric microplasmas for biomedical applications[J]. Applied Physics Letters 2012, 100(18): 183702.
  • 9yang X, Moravej M, Nowling G R, et al. Comparison of an atmos- pheric pressure, radio-frequency discharge operating in the ct and modes[J]. Plasma Sources Science & Technology, 2005, 14(2): 314-320.
  • 10Beouf J P, Pitchford L C. Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge[J]. Journal of Applied Physics, 2005, 97(10): 103307.

二级参考文献7

共引文献75

同被引文献29

  • 1宋慧敏,李应红.等离子体技术在航空领域中的应用研究[J].航空维修与工程,2004(5):19-20. 被引量:3
  • 2Bityurin V A, Lineberry J T, Litchford R J, et al. Thermodynamic analysis of the AJAX propulsion concept[R]. Reno, USA: A1AA, 2000 0445.
  • 3Sheikm E G. Kuranov A L. Scramjet with MHD bypass under "~AJAX" concept[R]. Reno, USA: AIAA, 2004: 1192.
  • 4Kuranov A, Korabelnikov A. Hypersonic technologies of atmospheric cruise flight under AJAX concept[R]. Dayton, USA: AIAA, 2008: 2524.
  • 5Grave D B, Jensen K F, A Continuum model DC and RF discharge[J]. IEEE Transactions on Plasma Science, 1986, 14(2): 78-9 1.
  • 6Boeuf J P. A two-dimensional model of DC glow discharges[J]. Jour- nal of Physics, 1988, 63(5): 1342-1354.
  • 7Macheret S O, Shneider M N, Mile R B. Modeling of air plasma gen- eration by repetitive high-voltage nanosecond pulse[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 1301-1314.
  • 8Surzhikov S T, Shang J S. Two-component plasma model for twodimensional glow discharge in magnetic field[J]. Jounaal of Computa- tional Physics, 2004, 199(2): 437-464.
  • 9Raizer Y E Gas discharge physics[M]. Berlin, Germany: Springer, 1991: 408-412.
  • 10Toro E F. Riemann solvers and numerical methods for fluid dynam- ics[M]. Berlin, Gen'nany: Springer, 2009: 265-282.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部