期刊文献+

从VAST会议解读可视分析学新进展 被引量:2

The Research Development of Visual Analytics from the Perspective of VAST Conference
原文传递
导出
摘要 【目的】对可视分析学的最新进展做全面梳理,探讨其在图书情报学领域的深入应用,以期为后续研究提供参考。【方法】研究比较可视分析学的若干特点,基于VAST会议近5年的论文,从意义构建及合作、文本分析、高维数据可视分析、空间时间分析和应用实例5个方面进行梳理总结。【结果】阐明可视分析学的根本原理和跨学科属性,发现主要从开发新算法、改进现有模型和变换研究角度等方面拓展可视分析学研究。【结论】可视分析学目前围绕意义构建基础算法和设计原则,重点突破文本分析、高维数据和空间时间数据,探索全面应用,是高度面向应用的学科,且应用面非常广泛,虽然还处在发展期,但能为信息服务尤其是智能服务提供方法论支持。 [Objective] A thorough summarization is done on the latest development of Visual Analytics. Further application into library and information science areas is discussed. [Methods] Firstly several characteristics of visual analytics are compared, then based on VAST papers past five years, the paper summarizes from five aspects including sensemaking, text analytics, high dimensional data visual analysis, spatial and temporal analysis, and application cases. [Results] The basic principles and interdisciplinary attributes are explored. It's found that visual analytics studies are mainly conducted from angles of developing new algorithms, improving existing models and changing research perspectives etc. [Conclusions] Visual Analytics researches focus on constructing sensemaking basic algorithms and design principles, making breakthroughs in text analytics, high dimensional data, and spatial and temporal data analysis. Visual analytics is highly application oriented and widely used, and provides methodological support for information service, especially the intelligent service, although it is still in the developing stage.
出处 《现代图书情报技术》 CSSCI 北大核心 2014年第10期14-24,共11页 New Technology of Library and Information Service
基金 国家社会科学基金重大项目"基于语义的馆藏资源深度聚合与可视化展示研究"(项目编号:11&ZD152)的研究成果之一
关键词 可视分析学 信息可视化 意义构建 高维数据 情报学 Visual analytics Information visualization Sensemaking High dimensional data Information science
  • 相关文献

参考文献58

  • 1Tukey J W. Exploratory Data Analysis [M]. Reading MA, US: Addison-Wesley, 1977.
  • 2Wong P C, Thomas J. Visual Analytics [J]. IEEE ComputerGraphics and Applications, 2004, 24 (5): 20-21.
  • 3Thomas J J, Cook K A. Illuminating the Path: The Research and Development Agenda for Visual Analytics [M]. IEEE Computer Society Press, 2005.
  • 4Keim D A, Kohlhammer J, Ellis G, et al. Mastering the Information Age: Solving Problems with Visual Analytics [M]. Eurographics Association, 2010.
  • 5May R, Hanrahan P, Keim D A, et al. The State of Visual Analytics: Views on What Visual Analytics is and Where It is Going [C]. In: Proceedings of 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST), Salt Lake City, UT, USA. IEEE, 2010:257-259.
  • 6Keim D A, Mansmann F, Thomas J. Visual Analytics: How Much Visualization and How Much Analytics?[J]. SIGKDD Explorations, 2009, 11(2): 5-8.
  • 7Keim D A, Mansmann F, Oelke D, et al. Visual Analytics: Combining Automated Discovery with Interactive Visualizations [C]. In: Proceedings of the l lth International Conference on Discovery Science, Budapest, Hungary. Springer Berlin Heidelberg, 2008: 2-14.
  • 8Pirolli P, Card S. The Sensemaking Process and Leverage Points for Analyst Technology as Identified Through Cognitive Task Analysis [C]. In: Proceedings of the International Conference on Intelligence Analysis.2005: 2-4.
  • 9Klein G, Phillips J K, Rall E L, et al. A Data-Frame Theory of Sensemaking [C]. In: Proceedings of the 6th International Conference on Naturalistic Decision Making. Mahwah, Nj: Lawrence Erlbaum Associates, 2007:15-17.
  • 10Kodagoda N, Attfield S, Wong B L, et al. Using Interactive Visual Reasoning to Support Sense-making: Implications for Design [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2217-2226.

二级参考文献119

共引文献243

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部