期刊文献+

基于SVM方法的神经网络呼吸音识别算法 被引量:7

Neural network recognition algorithm of breath sounds based on SVM
下载PDF
导出
摘要 提出了一种神经网络的SVM(支持向量机)呼吸音识别算法,将通过小波分析得到的呼吸音特征输入神经网络,作为SVM方法的特征输入,对训练样本进行训练,再对测试样本进行分类识别。对于呼吸音反映的3种状态(正常、轻度病变和重度病变)进行了识别,同时与K最近邻(KNN)方法进行比较。实验结果表明,SVM方法具有较高的识别精度,能够对呼吸音状态进行识别,同时在此领域也验证了在神经网络方法中无法避免的局部极值问题。提示基于SVM方法的神经网络呼吸音识别算法有较好的精度,可为身体局域网技术提供信息处理的有效算法。 A SVM neural network (support vector machines) for breath sounds recognition algorithm was advanced,breath sounds feature obtained through wavelet analysis were input into neural networks and carried on the training to thetraining samples as a feature of SVM method input in order to classify the test samples. Three States (normal, mild andsevere lesions) of breath sounds were recognized, and K nearest neighbor (KNN) methods are compared. The resultsshow that SVM method has a higher recognition accuracy and can be used to recognize different breath sounds, whichsettled the local extremum problem that cannot be avoided in the neural network method and provide an effective algo-rithm for information processing in body area network technology.
作者 刘国栋 许静
出处 《通信学报》 EI CSCD 北大核心 2014年第10期218-222,共5页 Journal on Communications
关键词 支持向量机 呼吸音 小波分析 神经网络 身体局域网 support vector machine breath sounds wavelet analysis neural network body area network
  • 相关文献

参考文献10

  • 1王文渊,闫平凡.肺音研究综述[J].北京生物医学工程,1992,11(2):106-112. 被引量:8
  • 2WAITMAN L, CLARKSON K, BARWISE J. Representation andclassification of breath sounds recorded in an intensive[J]. Journal ofClinical Monitoring and Computing, 2000,16(2):95-100.
  • 3KANDASWAMY A, KUMAR C, JAYARAMAN S. Neural classifi-cation of lung sounds using wavelet coefficients[J]. Computers in Bi-ology and Medicine, 2004,34(4):523-537.
  • 4姚小静,王洪,李燕,崔建国.肺音信号分析及其识别方法的研究进展[J].重庆理工大学学报(自然科学),2013,27(12):95-100. 被引量:9
  • 5VAPNIK V. The Nature of Statistical Learning Theory[C]. New York,Springer, 1995.
  • 6LIN C,WANG S. Fuzzy support vector machines [J]. IEEE Transac-tions on Neural Networks, 2002,13(2):464-471.
  • 7SOVIJARVI A, VANDERSCHOOT J,EARIS J. Standardization ofcomputerized respiratory sound analysis[J]. European Respiratory Re-view, 2000,10(77): 585-592.
  • 8PESU L, HELISTO P,ADEMOVIC E. Classification of respiratorysounds based on wavelet packet decomposition and learning vectorquantization[J]. Technology and Health Care, 1998,6(1):65-74.
  • 9周维忠,冯心海,孙国基.基于小波系数聚类的特征提取分类方法[J].计算机研究与发展,2001,38(8):982-987. 被引量:12
  • 10刘毅,张彩明,赵玉华,董亮.基于多尺度小波包分析的肺音特征提取与分类[J].计算机学报,2006,29(5):769-777. 被引量:31

二级参考文献38

  • 1汪晨,曾祥龙,沈丽英.肺音研究的过去、现在和未来[J].医学与哲学,1993,14(9):50-51. 被引量:1
  • 2彭静,彭承琳.混沌理论和方法在医学信号处理中的应用[J].国际生物医学工程杂志,2006,29(2):124-127. 被引量:14
  • 3何声武.概率论与数理统计[M].北京:经济科学出版社,1992..
  • 4赵振宇,模糊理论和神经网络的基础与应用,1996年
  • 5何声武,概率论与数理统计,1992年
  • 6Sovijarvi A.R.A,Vanderschoot J,Earis J.E..Standardization of computerized respiratory sound analysis.European Respiratory Review,2000,10(77):585~592
  • 7Waitman L.R,Clarkson K.P,Barwise J.A.et al.Representation and classification of breath sounds recorded in an intensive.Journal of Clinical Monitoring and Computing,2000,16(2):95~105
  • 8Kandaswamy A,Kumar C,Jayaraman S.et al.Neural classification of lung sounds using wavelet coefficients.Computers in Biology and Medicine,2004,34(4):523~537
  • 9Gnitecki J,Moussavi Z,Pasterkamp H..Classification of lung sounds during bronchial provocation using waveform fractal dimensions.In:Proceedings of the 26th IEEE Annual International Conference of the IEEE EMBS,San Francisco,CA,2004,9:3844~3847
  • 10Pesu L,Helisto P,Ademovic E.et al.Classification of respiratory sounds based on wavelet packet decomposition and learning vector quantization.Technology and Health Care,1998,6(1):65~74

共引文献49

同被引文献40

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部