期刊文献+

模糊线性规划的γ-鲁棒解

γ-robust solutions of fuzzy linear programming problems
原文传递
导出
摘要 对于不确定系统的优化问题,模糊线性规划是一种常用的建模方法,但得到的最优解或满意解,往往对参数的变动缺少"免疫"能力,即参数受到扰动后,最初的最优解会变得不再最优甚至不可行.首先针对λ-截集水平下的模糊线性规划,给出了λ-鲁棒解的定义.利用模糊结构元理论对λ-鲁棒解的定义进行表示,得到了求解模型.由于决策者的不同,对解的可实现程度要求不同.故在模型中加入了能够反映决策者风险偏好的测度约束,该模型的解即为γ-鲁棒解,该解既有鲁棒性、优化性,又能体现决策者的风险偏好程度.通过算例可以看出,γ-鲁棒解对参数的变动具有"免疫"能力,能为决策者提供更为丰富的信息,体现出了更好的实用价值. Fuzzy linear programming is used widedly for the problems of uncertain system's optimization, but the optimization solutions or satisfactory solution are often not "immune" to parameters, that is if the parameters are changed, initial optimal solution is no longer optimal or even infeasible. First of all, for the λ-cut level of fuzzy linear programming, λ-robust optimization solutions are put forward; then article indicates the definition of λ-robust solution by fuzzy structured element, and obtains the solving model. Solution can achieve the degree requirements are different due to the different decision makers, therefore, the measure constraints which can reflect the decision-makers risk preferences are added to the model, the solution of this model is γ-robust solution, and the solution not only has the robustness and optimization, but also reflects the degree of risk preference of the decision makers. By an example, it is found that the optimization robust solutions with measurement are immune to parameters, which are more useful for decision-makers and reflect a better practical value.
作者 岳立柱 闫艳
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第11期2885-2891,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71071113) 中国博士后科学基金(2012M520937)
关键词 鲁棒解 结构元 模糊线性规划 模糊数 robust solutions structured element fuzzy linear programming fuzzy number
  • 相关文献

参考文献22

  • 1Ben-Tal A, Nemirovski A. Robust solutions of linear programming problems contaminated with uncertain data[J]. Mathematical Programming, 2000, 88(3): 411 -421.
  • 2Cadenasa J M, Verdegay J L. Using ranking functions in multi objective fuzzy linear programming[J]. Puzzy Sets and Systems, 2000, 111: 47-53.
  • 3Amiria N M, Nasseria S H. Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables[J]. Fuzzy Sets and Systems, 2007, 158: 1961-1978.
  • 4Jamison K D, Lodwiek W A. Fuzzy linear programming using a penalty method[J]. Fuzzy Sets and Systems, 2011, 19: 97-110.
  • 5Yager R R. A procedure for ordering fuzzy subsets of the unit interval[J]. Information Sciences, 1981, 24: 143-161.
  • 6赵海坤,郭嗣琮.一类全系数模糊线性规划的求解方法[J].模糊系统与数学,2009,23(3):139-144. 被引量:14
  • 7赵海坤,郭嗣琮.全系数模糊两层线性规划[J].模糊系统与数学,2010,24(3):98-106. 被引量:11
  • 8郭嗣琮.模糊数比较与排序的结构元方法[J].系统工程理论与实践,2009,29(3):106-111. 被引量:35
  • 9Leon T, Vercher E. Glving a class of fuzzy linear programs by using semi-innite programming techniques[J]. Fazzy Sets and Systems, 2004, 146: 235-252.
  • 10Maleki H R, Tata M, Mashinchi M. Linear programming with fuzzy variables[J]. Fuzzy Sets and Systems, 2000, 109:21 -33.

二级参考文献21

  • 1郭嗣琮.模糊实数空间与[-1,1]上同序单调函数类的同胚[J].自然科学进展,2004,14(11):1318-1321. 被引量:52
  • 2郭嗣琮.基于结构元的模糊值函数的一般表示方法[J].模糊系统与数学,2005,19(1):82-86. 被引量:36
  • 3郭嗣琮.[-1,1]上同序单调函数的同序变换群与模糊数运算[J].模糊系统与数学,2005,19(3):105-110. 被引量:57
  • 4方述成 汪定伟.模糊数学与模糊优化[M].北京:科学出版社,1997..
  • 5曾庆宁.模糊系统线性规划[J].西北电讯工程学院学报,1987,14(32):96-103.
  • 6Zimmerman H J. Fuzzy set theory and its aplieations[M]. Kluwer-Nijhoff Publishing,1985.
  • 7Tong S C. Interval number and fuzzy number linear programming [J]. Fuzzy Sets and Systems, 1994,66:301-306.
  • 8Yao J S,Wu K M. Ranking fuzzy numbers based on decomposition principle and signed distance[J]. Fuzzy Sets and Systems, 2000,116 : 275-288.
  • 9Maleki H R,Tata M,Mashinchi M. Linear programming with fuzzy variables[J]. Fuzzy Sets and Systems,2000, 109:21-33.
  • 10Qiao Z,Wang G Y. On solutions and distribution problems of the linear programming with fuzzy random variables coefficients[J]. Fuzzy Sets and Systems, 1993,58 : 155-170

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部