期刊文献+

乘性随机误差模型的最小二乘平差与精度评定 被引量:3

Least Squares Adjustment and Accuracy Estimation in Multiplicative Error Models
下载PDF
导出
摘要 针对乘性随机误差模型参数估计问题,在现有研究的基础上,应用最小二乘理论,讨论了普通最小二乘、加权最小二乘和偏差改正加权最小二乘3种参数平差方法;导出了这3种基于最小二乘原理的参数平差方法的精度评定公式;给出了观测值平差值与观测值改正数的精度评定公式以及大地测量各有关量间的互协方差矩阵;构造了3种最小二乘平差方法相应的单位权方差估计.数据模拟计算结果表明:偏差改正加权最小二乘适用于乘性误差模型的大地测量数据处理,具有二阶近似无偏性;根据模拟数据计算的3种方法参数估计的单位权中误差分别为1.964 8、0.999 8和0.980 7. To probe into the parameter estimation in multiplicative error models,three least squares(LS) adjustment methods,i. e.,the LS method,the weighted LS method and the bias-corrected weighted LS method,in multiplicative error models were discussed based on the existing researches and using the least squares theory. Their accuracy estimation expressions were derived,the parameter estimations and the variance-covariance matrices were obtained,and the variances of unit weight were constructed for the three LS adjustment methods. A simulated example demonstrates that the biascorrected weighted LS method is optimal and unbiased because in the example the estimations of unit weight variance are respectively 1. 964 8,0. 999 8 and 0. 980 7 to the LS method,the weighted LS method and the bias-corrected weighted LS method.
作者 师芸
出处 《西南交通大学学报》 EI CSCD 北大核心 2014年第5期799-803,共5页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(41204006) 陕西省教育厅专项资助项目(2013JK0960)
关键词 乘性随机误差模型 最小二乘 加权最小二乘 偏差改正加权最小二乘 单位权中误差 multiplicative error model least squares weighted least squares bias-corrected weighted least squares unit weight variance
  • 相关文献

参考文献18

  • 1GOODMAN J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66(11) : 1145-1150.
  • 2ULABY F T, KOUYATE F, BRISCO B, et al. Textural information in SAR images[J]. IEEE Transactions on Geosciences and Remote Sensing, 1986, 24: 235-245.
  • 3OLIVER C J. Information from SAR images[J]. Journal of Physics D : Applied Physics, 1991, 24 : 1493-1514.
  • 4XU P L. Despeckling SAR-type multiplicative noise [ J ]. International Journal of Remote Sensing, 1999, 20: 2577-2596.
  • 5LOPEZ-MARTNEZ C, POTI'IER E. On the extension of multidimensional speckle noise model from single-look to multilook SAR image[J]. IEEE Transactions on Geosciences and Remote Sensing, 2007, 45: 305-320.
  • 6LOPEZ-MARTNEZ C, FABREGAS X, PIPIA L. Forest parameter estimation in the Pol-InSAR context employing the muhiplicative-additive speckle noise model [ J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011,66: 597-607.
  • 7EWING C E, MITCHELL M M. Introduction to geodesy [ M ]. New York : Elsevier, 1970 : 130-146.
  • 8MacDORANP F. Satellite emission radio interferometric earth surveying series: GPS geodetic system[ J]. Bull Geodesy, 1979, 53 : 117-138.
  • 9SEEBER G. Satellite geodesy[ M]. Berlin: de Gruyter, 2003 : 539-544.
  • 10WEDDERBURN R W M. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method[J]. Biometrika, 1974, 61: 439-447.

同被引文献21

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部