期刊文献+

基于网络论坛文本挖掘的笔记本电脑满意度研究 被引量:3

Study on laptop satisfaction degree via text mining based on network forum
下载PDF
导出
摘要 不同于以往的满意度模型中头脑风暴和问卷调研等手段建立指标体系的思路,以大量掩埋和分布在各个网络平台中的评论信息为基础,通过文本挖掘手段分析消费者对笔记本电脑重点关注的角度和内容,确立评价指标体系;基于Formell模型,使用多元回归方法,建立了笔记本电脑满意度模型。该研究过程基于消费者的真实感受,提炼出了消费者对笔记本电脑最为关注的优势属性和缺陷属性,帮助产品制造商全面、准确地了解消费者的需求和心理期望。同时,满意度模型有助于消费者和制造商对笔记本电脑的满意度进行综合测算、比较和选择。 Different from the past satisfaction model based on the idea of establishing index system via brainstorms and questionnaire surveys, this study is built on a large number of comment information that is buried and distributed in various network platforms and tries to analyze what aspects and content the customers concern about laptops by means of text mining tools in order to establish the evaluation system. Using the multivariate regression method, we found the laptop satisfaction model based on Formell model. On account of consumers′ true feelings, the advantages and defects which customers concern most about laptops can be extracted in order to help product manufacturers to understand the demand and psychological expectations of customers comprehensively and accurately. At the same time, the satisfaction model will contribute to the comprehensive calculation and comparison of the satisfaction on laptops by both consumers and suppliers.
作者 李艳红 程翔
出处 《微型机与应用》 2014年第18期61-65,共5页 Microcomputer & Its Applications
基金 上海市金融信息技术研究重点实验室开放课题(2013110933)
关键词 网络论坛 文本挖掘 笔记本电脑 满意度 network forum text mining laptop satisfaction degree
  • 相关文献

参考文献7

二级参考文献33

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 3中国互联网络中心(CNNIC).第26次中国互联网络发展状况统计报告[R].北京,2010.
  • 4Yi J, Nasukawa T, Bunescu R, et al. Sentiment Analyzer: Ex- tracting Sentiments about a Given Topic using Natural Lan- guage Processing Techniques[-C]//Proceeclings of the 3rd IEEE International Conference on Data Mining (ICDM-2003). Mel- bourne, Florida: IEEE Press, 2003 : 427-434.
  • 5Hu M, Liu B. Mining and summarizing customer reviews[-C'] ff Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery And Data Mining (SIGKDI>2004). New York:ACM Press,2004:168-177.
  • 6王倩,何婷婷,闻彬,等.基于依存关系的中文情感要素抽取技术研究[C]//中国计算机语言学研究前沿进展(2007-2009).北京:清华大学出版社,2009:624-629.
  • 7Turney, Petter. Thumbs up or thumbs down Semantic orienta- tion applied to unsupervised classification of reviews[C]//Pro- ceedings of 40th Annual meeting of the association for Computa- tional Linguistics ( ACL-2002 ). Philadelphia, Pennsylvania, USA, 2002 : 417-424.
  • 8Kamps J, Marx M, Mokken R J, et al. Using WordNet to mea- sure semantic orientation of adjectives[C]//the 4th International Conference on Language Resources and Evaluation (LREC- 2004). Lisbon, 2004. 1115-1118.
  • 9Pang B, Lee L, Vaithyanathan S. Thumbs up senti-ment classifi- cation using machine learning techniques[C3 ff the 2002 Confe- rence on Empirical Methods in Natural Language Processing (EMNLP-2002). Philadelphia, USA, 2002 : 79-86.
  • 10Blei D, Ng A, Jordan 1VL Latent dirichlet allocationl-J]. Journal of Machine Learning Research, 2003(3) : 993-1022.

共引文献49

同被引文献27

  • 1柴玉梅,熊德兰,昝红英.Web文本褒贬倾向性分类研究[J].计算机工程,2006,32(17):89-91. 被引量:4
  • 2唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:136
  • 3TAN S,ZHANG J.An empirical study of sentiment analysis for Chinese documents[J].Expert Systems with Applications,2008,34(4):2622-2629.
  • 4PRABOWO R,THELWALL M.Sentiment analysis:a combined approach[J].Journal of Informetrics,2009,3(2):143-157.
  • 5LI N,WU D D.Using text mining and sentiment analysis for online forums hotspot detection and forecast[J].Decision Support Systems,2010,48(2):354-368.
  • 6STEFANO B,ANDREA E,FABRIZIO S.SentiW ordN et 3.0:an enhanced lexical resource for sentiment analysis and opinion mining[C].Proceedings of the Seventh Conference on International Language Resources and Evaluation.Malta:European Language Resources Association,2010:2200-2204.
  • 7PANG B,LEE L.Opinion mining and sentiment analysis[J].Foundations and Trends in Information Retrieval,2008,2(12):131-135.
  • 8ERIK C,BJORN S,YUNQING X,et al.New avenues in opinion mining and sentiment analysis[J].IEEE Intelligen Systems,2013,2(28):15-21.
  • 9LIU B,ZHANG L.A survey of opinion mining and sentimen analysis[M].New York:Springer US,2012.
  • 10THERESA W,JANYCE W,PAUL H.Recognizing contextua polarity in phrase-level sentiment analysis[C].Proceedings o the conference on Human Language Technology and Empirica Methods in Natural Language Processing.Stroudsburg:Association for Computational Linguistics,2005:347-354.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部