期刊文献+

三层同心圆模型的有限元网格模型

Finite element mesh models of three-layer concentric circular model
下载PDF
导出
摘要 目的改变网格数量和单元阶次,探讨二维三层同心圆模型电阻抗断层成像正问题数值解的精度。方法通过数值模拟实验,以二维同心圆模型的解析解为参考,比较不同网格数量和单元阶次的数值解,分析特定网格模型的数值精度。结果增加网格数量对于高阶单元结果精度的提高作用有限;应用更高阶单元如三阶、四阶单元提高计算精度的作用不大。结论二维场域用有限元求解EIT正问题采用中等网格数目的二阶三角形单元既可以达到满意的计算精度,又可以节省计算时耗、提高成像效率。 Objective We investigate the numerical precision of FEM solutions in three-layer concentric circular model by changing the number of meshes and element order.Methods Through numerical simulation experiments and taking analytic solutions of three-layer concentric circular model as the reference,we compare the numerical solutions in different number of meshes and element order,and analyze the numerical precision with certain mesh model.Results The increased number of meshes played a limited role in improving the calculation accuracy for a certain element of high order.Furthermore,the improvement of the higher order such as the third or fourth order elements is poor.Conclusions We choose the forward model with second order triangular element with medium number on two-dimensional field.This model can ensure calculating precision and save calculation consumption to improve the image reconstruction efficiency.
出处 《北京生物医学工程》 2014年第5期441-445,共5页 Beijing Biomedical Engineering
基金 国家科技支撑计划(2009BA179B03) 国家自然科学基金(51077127)资助
关键词 电阻抗断层成像 有限元网格 计算精度 electrical impedance tomography finite element mesh calculating precision
  • 相关文献

参考文献4

  • 1Woo E J, Hua P, Webster JG et al. Finite-element method in electrical impedance tomography [ J]. Med Bio Eng & Comput, 1994, 32(4) :530-536.
  • 2Oostendorp TF, Delbeke J, Stegeman DF. The conductivity of the human skull: Results of in vivo and in vitro measurements [J]. IEEE Transaction on Biomedical Engineering, 2000, 42 (11) :1487-1491.
  • 3刘君,朱善安,Bin He.基于分割后断层成像数据的人体头部有限元模型构建方法[J].航天医学与医学工程,2007,20(2):141-146. 被引量:6
  • 4Smythe WR. Static and Dynamic Electricity [ M]. Washington DC : Hemisphere Publishing Corporation, 1989 : 65-67.

二级参考文献11

  • 1Mohamed A,Davatzikos C.Finite element mesh generation and remeshing from segmented medical images[C].IEEE International Symposium on Biomedical Imaging:Macro to Nano,2004,(1):420-423.
  • 2Chew LP.Guaranteed quality delaunay meshing in 3D[C].13th ACM Symposium on Computer Geometry,1997:391-393.
  • 3Lohner R,Parikh P.Generation of three-dimensional unstructured grids by the advancing front method[J].International Journal for Numerical Methods in Fluids.1988,8(10):1135-1149.
  • 4YANG Xiaoshong,SHENG Hao,TANG Zheseng.Segmented volume based tetrahedralization algorithm[J].Journal of Image and Graphics,2002,7A (9):865-870.
  • 5Woo YC,Dae YK,Young TI,et al.Tetrahedral mesh generation based on advancing front technique and optimization scheme[J].International Journal for Numerical Methods in Engineering,2003,58(12):1857-1872.
  • 6Bonovas PM,Kyriacou G A,Sahalos J N.A realistic three dimensional FEM of the human head[J].Physiological Measurement,2001,22(1),65-76.
  • 7Ferrant M,Nabavi A,Macq B,et al.Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model[J].IEEE Transactions on Medical Imaging,2001,20(12):1384-1397.
  • 8Rivara MC.New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations[J].International Journal for Numerical Methods in Engineering,1997,40(18):3313-3324.
  • 9Molinari JF,Ortiz M.Three-dimensional adaptive meshing by subdivision and edge-collapse in finite deformation dynamic-plasticity problems with application to adiabatic shear banding[J].International Journal for Numerical Methods in Engineering,2002,53(5):1101-1126.
  • 10ZHANG YC,ZHU SA,HE B.A second-order finite element algorithm for solving the three-dimensional EEG forward problem[J].Physics in Medicine and Biology.2004,49(4):2975-2987.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部