期刊文献+

横向能量及入射角度对多势垒结构共振传输的影响

Transverse Energy and Incidence Angle on Influence of the Multi-Barrier Structure of Resonant Transmission
下载PDF
导出
摘要 利用一维多势垒结构模型推导出透射系数的表达式,并计算了一维四势垒结构在不同的横向能量及不同的入射角度下对共振传输的影响.通过计算可以看出多势垒结构相当于过滤器,对入射粒子可以起到一个过滤作用,可以通过控制入射粒子的横向能量及入射角度使得只有具有一定能量的粒子通过,从而可以选择出具有不同能量的粒子.本文在对晶体电子散射及电子光谱学领域的分析具有一定的帮助. The expression of transmission coefficient have been deduced for a one-dimensional multi-barrier structure,the effect of resonant transmission,with different transverse energy and different incident angles in four barrier structure,have been calculated. As can be seen by calculation that the multi-barrier structure is equivalent to a filter which has filtration function for incident particles. This structure can control the transverse energy and angles of incident particles so that only particles with certain energy pass. Hence,in this way,we can select out different particles with different energy. Meanwhile,this plays an important role in the area of analysis of crystal electron scattering and electron spectroscopy.
作者 骆敏 杨双波
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期58-61,共4页 Journal of Nanjing Normal University(Natural Science Edition)
基金 南京林业大学实验室与基地建设处2014实验项目
关键词 横向能量 入射角度 共振透射系数 多势垒结构 transverse energy incidence angle resonant transmission coefficient multi-barriers structure
  • 相关文献

参考文献12

  • 1Esaki L,Tsu R. Superlattice and negative differential conductivity in semiconductors [ J ]. IBM J Res Develop, 1970,14 (1) : 61-65.
  • 2Tsu R, Esaki L. Tunneling in a finite superlattice [ J ]. Appl Phys Lett, 1973,22 (11 ) :562-564.
  • 3Chang L L, Esaki L, Tsu R. Resonant tunneling in semiconductor double barriers [ J ]. Appl Phys Lett, 1974,24 (12) : 593 - 595.
  • 4Kelly M J. Tunnelling in quantum-well structures[ J]. Electronics Letters, 1984,20 (19) :771-772.
  • 5Vasell M O, Johnson Lee, Lockwood H F. Muhibarrier tunneling in heterostruetures [ J ]. J Appl Phys, 1983,54 ( 9 ) : 5 206- 5 213.
  • 6Rauch C, Strasser G, Unterrainer K, et al. Transition between coherent and incoherent electron transport in superlattices [ J ]. Phys Rev Lett,1998,81(16) :3 495-3 498.
  • 7徐进章,许怀哲,徐徐,徐大鹏.ABABA型方形双势垒结构中随质量和入射角变化的共振贯穿研究[J].兰州大学学报(自然科学版),2005,41(4):82-84. 被引量:1
  • 8骆敏,杨双波.多势垒结构共振透射系数的计算[J].南京师大学报(自然科学版),2012,35(2):50-55. 被引量:3
  • 9骆敏,杨双波.外场中多势垒结构的共振传输[J].南京师大学报(自然科学版),2012,35(4):34-40. 被引量:3
  • 10Bastard G. Superlattice band structure in the envelope-function approximation [ J ]. Phys Rev B, 1981,24 (10) :5 693-5 697.

二级参考文献34

  • 1夏建白 Baldereschi A.超晶格电子结构的赝势计算[J].半导体学报,1987,8:574-574.
  • 2周世勋.量子力学教程[M].北京:高等教育出版社,2006:161.
  • 3Tsu R, Esaki L. Tunneling in a finite super lattice[J]. Appl Phys Letts, 1973, 22(2): 562-564.
  • 4Ricco B, Azbel M Y. Physics of resonant tunneling.The one-dimensional double barrier case[J]. Phys Rev B, 1984, 29(4): 1970-1981.
  • 5Glazer Y, Gitterman M. Tunneling through highly transparent symmetric double barriers[J]. Phys Rev B, 1991, 43(2): 1855-1858.
  • 6Gapasso F, Mohammed K, Cho A Y. Resonant tunneling through double barriers, perpendicular quantum transport phenomena in super lattice, and their device applications[J]. IEEE J Quantum Electronics, 1986, 22(9): 1853-1869.
  • 7Arsenanlt C J, Meunier M. Resonant-tunneling lifetime comparison between double-barrier and δ-doped barrier structure[J]. Phys Rev B, 1989,39(12): 8739-8742.
  • 8Vassell M O, Lee J, Lockwood H F. Multibarrier tunneling in Ga1-xAlxAs/GaAs heterostructures[J]. Appl Phys, 1983, 54(9): 5206-5213.
  • 9Zhao X D, Yamamoto H, Taniguchi K. Origin of the defect states at ZnS/Si interfaces[J]. Appl Phys A, 1995, 61(6): 637-641.
  • 10Redhammer R, Harman R, Cmar R. Transmission coefficients of asymmetrical rectangular double barrier structures[J]. Phys Stat Sol A, 1992, 131(1):161-166.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部