期刊文献+

基于遗传微粒群算法的工程项目工期优化研究 被引量:1

Optimal Duration of Engineering Project Based on GA-PSO
下载PDF
导出
摘要 企业的项目管理活动均会涉及到两个重要的绩效管理目标,即项目最小工期和最优资源配置。研究了在资源有限的情况下工期最优问题。运用遗传和微粒群相结合的优化算法,解决了标准粒子群算法容易陷入局部最优,从而出现所谓的"早熟"现象。通过对某工程项目工期优化的实例分析,用Matlab 7.0软件编程,验证了算法的有效性,即循环计算1万次,经四舍五入圆整处理,得到最优工期为35天,比初始值计算结果减少3天。项目工期优化分析认为:还需要拓展研究模型参数的科学取值和独立制作软件模块供各类企业方便使用等问题。 The proj ect management activities in enterprises will always involve two important performance man-agement objectives,namely the minimum project duration and optimal allocation of resources.Studied the problem of optimal duration when resources are limited.With the application of GA (Genetic Algorithm)and PSO (Particle Swarm Optimization),solved the defect of easily falling into local optimum which is the so-called “premature”phenomenon in the standard particle swarm optimization.By analyzing an actual project schedule optimization,the effectiveness of the method is demonstrated combining with programming through Matlab 7.0 software,which was calculated 10 000 times,after rounding processing to give optimal duration of 35 days,compared with the initial value calculated decrease 3 days.Analysis:some problems still need to study the model parameters also need to expand the scientific value like selecting scientific model parameters and indie software module for all kinds of enterprises.
出处 《电力与能源》 2014年第5期553-556,共4页 Power & Energy
基金 输变电工程造价动态管控关键技术研究(国家电网公司总部科技项目 201401-201512)
关键词 资源有限-工期最短 遗传微粒群算法 轮盘赌选择法 工期优化 Limited resources-the shortest time limit GA-PSO Roulette wheel selection method Optimal duration
  • 相关文献

参考文献8

  • 1骆刚,刘尔烈,王健.遗传算法在网络计划资源优化中的应用[J].天津大学学报(自然科学与工程技术版),2004,37(2):179-183. 被引量:43
  • 2惠跃荣;郭春雨;董智力.用计算机方法实现施工网络优化[J]土木工程与高新技术,2002506-511.
  • 3孙蕾.基于遗传算法、神经网络的项目工期与项目资源配置优化研究[D]上海:华东理工大学,2011.
  • 4Kanovic,Z (Kanovic Zeljko),Bugarski V (Bugarski Vladimir),Backalic T (Backalic Todor). SHIP LOCK CONTROL SYSTEM OPTIMIZATION USING GA,PSO AND ABC:A COMPARATIVE REVIEW[J].PROMET-TRAFFIC &TRANSPORTATION,2014,(01):23-31.
  • 5Jing,XJ (Jing Xiaojun),Zhang,J (Zhang Jie),Jiang.HX (Jiang Haixia),Zhong ML (ZhongMingliang),Tao L (Tao Lei). Incomplete Fingerprint Recognition Based on Inproved GA-PSO[J].CHINESE JOURNAL OF ELEC-TRONICS,2013,(04):769-772.
  • 6Sheikhalishahi;M (Sheikhalishahi;M.);Ebrahimipour; V (Ebrahimipour;V.);Shiri;H (Shiri;H.);Zaman;H (Zaman;H.);Jeihoonian;M (Jeihoonian;M.).查看详情[J],IN-TERNATIONAL JOURNAL OF ADVANCED MANU-FACTURING TECHNOLOGY2013(1-4):317-338.
  • 7Galvez,A (Galvez,Akemi),Iglesias,A (Iglesias An-dres). A new iterative mutually coupled hybrid GA-PSO approach for curve fitting in manufacturing[J].Applied Soft Computing Journal,2013,(03):1491-1504.
  • 8Huang,HC (Huang,Hsu-Chih). FPGA-Based Hybrid GA-PSO Algorithm and Its Application to Global Path Planning for Mobile Robots[J].PRZEGLAD ELEKTRO-TECHNICZNY,2012,(7B):281-284.

二级参考文献6

  • 1玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 2Hegazy T,El-Zamzamy H. Project management software that meet the challenge[J].Cost Engineering Journal,1998, 4(5):25-33.
  • 3Johnson R. Resource constrained scheduling capabilities of commercial project management software[J]. Project Management Journal, 1992, 22(4):39-43.
  • 4Leu Sou-Sen, Yang Chung-Huei. GA-based multicriteria optimal model for construction scheduling[J].Journal of Construction Engineering and Management,1999,25(6):420-427.
  • 5Leu Sou-Sen, Yang Chung-Huei,Huang Jiun-Ching . Resource leveling in construction by genetic algorithm-based optimization and its decision support system application[J]. Automation in Construction, 2000 (10):27-41.
  • 6张连营,骆刚,鹿丽宁.遗传算法在工程项目资源优化中的应用[J].天津大学学报(自然科学与工程技术版),2001,34(2):188-192. 被引量:26

共引文献42

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部