期刊文献+

基于改进型深度数据流形的数据分类算法及在人脸中的应用

A Novel Data Classification Algorithm and Application Research Based on Modified Depth Data Manifold
下载PDF
导出
摘要 针对数据分类问题的局限,提出一种基于改进型深度数据流形的数据分类算法并将其应用到人脸识别中。首先,通过采集人脸图像的深度信息,利用稀疏表示对其进行去噪处理;再结合图像的颜色信息,重新生成三维人脸信息数据库,通过对人脸数据的流形分析得到最优的降维结果,按十字十乘交叉验证法的原则选取训练集和测试集,将训练集输入支持向量机算法建立数据分类器;最后,将测试集输入训练完成的分类器中,实现人脸数据分类。选取ORL、Yale两类人脸图像标准数据库与传统人脸识别算法进行交叉对比实验,验证算法的优越性和可行性。实验结果表明:所提出的算法有较高的分类准确率,可有效地完成人脸识别。 For the localization of data classification, a novel data classification algorithm based on modified data manifold is proposed. It is used as the method of face recognition. Firstly, the depth information of images are collected by Kinect, and the sparse representation can be used to do the denoising. Secondly, the three-dimensional face data base can be established by the colour information and depth information. The dimension of data sets is reduced by the analysis of the data manifold, and optimal results of data dimension reduction can be gotten. The training and test sets are gotten by the principle of ten cross validation, and data classifier can be gotten by the support vector machine. Finally, the test sets are inputted, and the face data classification can be achieved. The two classes of data sets are selected as the experimental data, which consist of ORL and Yale. The comparison experiments can be achieved by the two data sets, and the experiment results show that the proposed method not only has a higher classification accuracy rate,but it has a great effect to achieve face recognition.
出处 《电子器件》 CAS 北大核心 2014年第5期844-849,共6页 Chinese Journal of Electron Devices
基金 国家自然科学基金项目(61272253)
关键词 数据分类 人脸识别 数据流形 深度 降维 支持向量机 data classification face recognition data manifold depth dimension reduction support vector machine
  • 相关文献

参考文献15

  • 1Rencher A C, Christensen W F. Methods of Multivariate Analysis [ M ]. Third Edition, Hoboken : Wiley Press,2012:405-433.
  • 2Wang J,Zhou Y S, Du X J, et al. Personal Credil Assessment Based on KPCA and SVM [ C ]//Proceedings of international Conference on Business Intelligence and Financial Engineering, Beijing: IEEE Press, 2012 : 25 -28.
  • 3Dalai N, Triggs B. Histograms of Oriented Gradients for Human Detection [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,San Diego: IEEE Press,2005:886- 893.
  • 4Gentle J E, Hardle W K, Mori Y C. Handbook of Computational Statistics: Concepts and Methls [ M ]. Second Edition, Germany : Springer Press,2012:883-926.
  • 5losifidis A, Tefas A, Nikolaidis N, et al. Multi-View Human Movement Recognitian Based on Fuzzy Distances and Linear Discriminant Analysis [ J ]. Computer Vision and Image Undetanding,2012,116 ( 3 ) :347-360.
  • 6Zafeiriou S, Tzimimpoulos G, Petrou M, et al. Regularized Kernel Discriminant Analysis with a Rolmst Kernel for Face Recognition and Verification[ J ]. IEEE Trmlsaetions on Neural Networks and Iarning Systems ,2012,23 ( 3 ) :526-534.
  • 7Roweis S T, Saul L K. Nonlinear Dimensionflity Reduction by laxally Linear Embedding [ J ]. Science, 2000,290 ( 5500 ) : 2323 - 2326.
  • 8翟永前,乔建,赵力.基于简化Gabor小波的人脸识别算法研究[J].电子器件,2012,35(6):687-691. 被引量:4
  • 9王宪,慕鑫,张彦,张方生,宋书林,平雪良,刘浩.基于曲波域与核主成分分析的人脸识别[J].光电工程,2011,38(10):98-102. 被引量:11
  • 10肖泉,丁兴号,王守觉,郭东辉,廖英豪.基于自适应超完备稀疏表示的图像去噪方法[J].仪器仪表学报,2009,30(9):1886-1890. 被引量:24

二级参考文献32

  • 1李伟红,龚卫国,陈伟民,梁毅雄,尹克重.基于小波分析与KPCA的人脸识别方法[J].计算机应用,2005,25(10):2339-2341. 被引量:6
  • 2邵君,尹忠科,王建英,张跃飞.信号稀疏分解中过完备原子库的集合划分[J].铁道学报,2006,28(1):68-71. 被引量:17
  • 3BRONO A, OSSHAUSEN B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural image [J]. Nature, 1996,381:607-609.
  • 4DONOHO D L, XIAOMING H.. Combined image representation using edgelets and wavelets[J]. Wavelet Applications in Signal and Image Processing VII, in SPIE, 1999, 3813:468-476.
  • 5KREUTZ K, MURRAY J E Dictionary learning algorithms for sparse representation[J]. Neural Computation, 2003,15(2):349-396.
  • 6AHARON M, ELAD M,. BRUCKSTEIN A M.. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006,54(11):4311-4322.
  • 7BRYT O, ELAD M. Compression of facial images using the K-SVD algorithm[J]. Journal of Visual Communication and Image Representation, 2008,19(4):270-283.
  • 8MAIRAL J, ELAD M, SAPIRO G. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 2008,17(1):53-69.
  • 9DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994,81:425- 455.
  • 10ROMBERG J K, CHOI H, BARANIUK R.G. Bayesian tree-structured image modeling using wavelet domain hidden markov models[J]. IEEE Transactions on Image Processing, 2001,10(7):1056-1068.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部