期刊文献+

基于自然环境辨识的移动机器人位姿快速检测 被引量:3

Fast Detection of Mobile Robot Pose Based on the Nature Environment Recognition
下载PDF
导出
摘要 为了对室外移动机器人进行快速准确的位姿检测,基于Poineer3平台,运用单目对室外环境进行图像采集,对图像采用基于图像特征和神经网络的方法进行了环境的理解,进而以地面为研究对象,运用Horn-Schunck光流法获得局部地面光流。进而由图像坐标系和机器人坐标系的变化关系以及运动速度和光流速度的关系,把光流速度转化为机器人的运动速度,从而实现了机器人的位姿检测。实验结果表明,该方法可行且易操作,检测速度快。 In order to detect the pose of outdoor mobile robot fast and exactly, and based on Poineer3 platform, we have carried on the outdoor video image acquisition. With the method of local fractal dimension and neutral network, we achieve the recognition of the ground. Then to the ground as the research object, Hom-Schunck optical flow method is used to calculate optical flow of the ground. And then by the relation between the image coordinate system and the robot coordinate system, the distance is measured between the research object and the robot. According to the relationship of velocity of movement and optical flow velocity, the optical flow velocity is converted to the speed of robot, so as to realize the position detection of the robot. The experimental result shows that the method is feasible and easy to operate with fast inspection speed.
出处 《电子器件》 CAS 北大核心 2014年第5期876-881,共6页 Chinese Journal of Electron Devices
基金 国家公益性行业(气象)科研专项项目(GYHY201106040) 江苏省产学研联合创新资金--前瞻性联合研究项目(BY2011111) 江苏省产学研项目(2012t026)
关键词 机器人视觉 位姿检测 光流 室外环境辨识 robot vision the position detection optical flow identification of the outdoor environment
  • 相关文献

参考文献12

  • 1Shi J,Tomasi C. Good Features to Track [ C]//Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94. , 1994 IEEE Computer Society Conference on. IEEE, 1994:593-600.
  • 2Long W, Yang Y H. Stationary Background Generation: An Ahernative to the Difference of Two Images [ J ]. Pattern Recognition, 1990,23 ( 12 ) : 1351 - 1359.
  • 3Singh A, Allen P. Image-Flow Computation: An Estimation- Theoretic Framework and a Unified Perspective[ J ]. CVGIP: Image Understanding, 1992,56(2 ) : 152-177.
  • 4Adelson E H, Bergen J R. Spatiotemporal Energy Models for the Perception of Motion [ J ]. J. Opt Soc Am A, 1985,2 (2) :284-299.
  • 5Heeger D J. Model for the Extraction of Image Flow [ J ]. JOSA A, 1987,4( 8 ) : 1455-1471.
  • 6Ullman S. The Interpretation of Structure from Motion. Proceedings of the Royal Society of London. Series B [ J ]. Biological Seiem'es1979,203 ( 1153 ) :405-426.
  • 7Ullman S. Maximizing Rigidity : The Incremental Recovery of 3-D Structure from Rigid and Rubbery Motion [ J ]. 1983.
  • 8Horn B K P,Schunck B G. Determining Optical Flow[ J]. Artificial Intelligence, 1981,17 ( 1 ) : 185-203.
  • 9Van De Sande K E A, Gevers T, Snoek C G M. Evaluating Color Descriptors for Object and Scene Recognition [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010, 32(9) :1582-1596.
  • 10Felzenszwalb P F, Girshick R B, McAllester D, et al. ObjectDetection with Discriminatively Trained Part-Based Models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32(9) :1627-1645.

同被引文献38

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部