期刊文献+

基于广义轮换矩阵的伪随机广义二进制轮换矩阵设计 被引量:1

Design of Pseudo-Random Generalized Binary Rotation Matrix Based on Generalized Rotation Matrix
下载PDF
导出
摘要 压缩感知中,测量矩阵在信号的获取和重构过程中起着重要的作用。传统的随机测量矩阵在采样率较高的情况下,能够获得比较好的重构效果,但在低采样率下的重构效果不够理想。确定性测量矩阵自身存在一些限制因素,与随机测量矩阵相比,重构效果有所降低。基于广义轮换矩阵(GR),提出了两种结构随机矩阵:广义二进制轮换矩阵(GBR)和伪随机广义二进制轮换矩阵(PGBR)。仿真结果表明,相对于传统的测量矩阵,新的测量矩阵在二维图像重建方面效果较好,所需重构时间相差不大,在较低的采样率下能够获得更加精确的重建。 In compressed sensing, measurement matrix plays an important role in signal acquisition and reconstruction. The traditional random measurement matrices can achieve good performance on the condition that the sampling rate is high enough, whereas the reconstructions are not satisfactory at low sampling rates. Compared with these random measurement matrices, the deterministic measurement matrices possess their own constraints, which lead to worse performance. Based on the generalized rotation (GR) matrix, two kinds of structured random matrices are proposed as the generalized binary rotation (GBR) matrix and the pseudorandom generalized binary rotation (PGBR) matrix. Simulation results for two dimensional signals show that the two series of new matrices perform better than the traditional measurement matrices. The amount of time required by the traditional and the new approaches is about the same. Moreover, they can obtain more accurate reconstructions at low sampling rates.
作者 郭继昌 孙骏
出处 《数据采集与处理》 CSCD 北大核心 2014年第5期677-682,共6页 Journal of Data Acquisition and Processing
基金 高等学校博士学科点专项科研基金(20120032110034)资助项目
关键词 压缩感知 测量矩阵 伪随机数列 广义二进制轮换矩阵 伪随机广义二进制轮换矩阵 compressed sensing measurement matrix pseudo-random sequence generalizedbinary rotation matrix pseudo-random generalized binary rotation matrix
  • 相关文献

参考文献22

  • 1Donoho D L.Compressed sensing[J].Information Theory,IEEE Transactions on,2006,52(4):1289-1306.
  • 2CandesE J,Tao T.Decoding by linear programming[J].Information Theory,IEEE Transactions on,2005,51(12):4203-4215.
  • 3Donoho D L,Huo X.Uncertainty principles and ideal atomic decomposition[J].Information Theory,IEEE Transactions on,2001,47(7):2845-2862.
  • 4Baraniuk R G.Compressive sensing[J].Signal Processing Magazine,IEEE,2007,24(4):118-121.
  • 5Calderbank R,Howard S,Jafarpour S.Construction of a large class of deterministic sensing matrices that satisfy a statistical isometryproperty[J].Selected Topics in Signal Processing,IEEE Journal,2010,4(2):358-374.
  • 6Candès E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].Information Theory,IEEE Transactions on,2006,52(2):489-509.
  • 7Tsaig Y,Donoho D L.Extensions of compressed sensing[J].Signal Processing,2006,86 (3):549-571.
  • 8Bajwa W U,Haupt J D,Raz G M,et al.Toeplitzstructured compressed sensing matrices[C]// Statistical Signal Processing,SSP' 07.IEEE/SP 14th Workshop on.Washington DC,USA:IEEE,2007:294-298.
  • 9DeVore R A.Deterministic constructions of compressed sensing matrices[J].Journal of Complexity,2007,23(4):918-925.
  • 10Amini A,Marvasti F.Deterministic construction of binary,bipolar,and ternary compressed sensing matrices[J].Information Theory,IEEE Transactions on,2011,57(4):2360-2370.

二级参考文献112

共引文献131

同被引文献9

  • 1Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2Candes E J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9):589-592.
  • 3Tsaig Y,Donoho D L.Extensions of compressed sensing[J].Signal Processing.2006,86(3):549-571.
  • 4Elad M.Optimized projections for compressed sensing[J].IEEE Transactions on Signal Processing,2007,55(12):5695-5702.
  • 5Xu J,Pi Y,Cao Z.Optimized projection matrix for compressive sensing[J].EURASIP Journal on Advances in Signal Processing,2010,2010(1):1-8.
  • 6Abolghasemi V,Ferdoesi S,Sanei S.A gradientbased alternating minimization approach for optimization of the measurement matrix in compressive sensing[J].Signal Processing,2012,92(4):999-1009.
  • 7Yan W,Wang Q,Shen Y.Shrinkage-based alternating projection algorithmfor efficient measurement matrix constructionin compressive sensing[J].IEEE Transations on Instrumentation and Measurement,2014,63(5):1073-1084.
  • 8Szarek S J.Condition numbers of random matrices[J].Journal of Complexity,1991,7(2):131-149.
  • 9程涛,朱国宾,刘玉安.压缩感知中高斯矩阵的优化研究[J].计算机应用研究,2014,31(12):3599-3602. 被引量:5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部