期刊文献+

基于分块压缩感知与平均分组的图像多描述编码 被引量:2

Image Multi-Description Coding Method Based on Equally Grouping and Block Compressive Sensing Strategy
下载PDF
导出
摘要 提出了一种基于压缩感知理论的图像多描述编码的方法。该方法在编码端利用分块压缩感知技术对图像进行随机测量,将得到的测量结果矩阵按行平分形成多个描述;在解码端,利用所收到的若干描述重建出相应的图像,且收到的描述个数越多,重建图像的质量越好。直接对测量后的矩阵进行行分割,可以随意产生多个描述,同时也使得编码端的计算复杂度大大降低。实验表明,在相同条件下,本文方法的编码时间更短,图像的重构质量也明显优于其他多描述编码的方法。 An image multiple description coding method is proposed based on compressive sensing theory. It measures the image by block compressive sensing technology on the encoding side, and then divides the result matrix into many descriptions by grouping equally in the rows. In the decoding side, it reconstructs the image by received descriptions. The more the descriptions are received, the better the quality of the reconstructed image is. Dividing the result matrix into groups directly can generate many descriptions easily and reduce computational complexity on the encoding side. Experimental results show that, in the same experimental conditions, the proposed method exhibits faster encoding speed and higher reconstruction image quality than other methods.
出处 《数据采集与处理》 CSCD 北大核心 2014年第5期764-769,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61071091 61071166)资助项目 江苏高校优势学科建设工程资助项目
关键词 多描述编码 压缩感知 分块测量 平均分组 multi-description coding compressive sensing block measurement grouping equally
  • 相关文献

参考文献11

  • 1Goyal V K.Multiple description coding:Compression meets the network[J].IEEE Signal Processing Magazine,2001,18(5):74-93.
  • 2赵小青,倪林.基于感兴趣区域的分层多描述图像编码[J].数据采集与处理,2008,23(2):135-140. 被引量:1
  • 3Donoho D.Compressed sensing[J].IEEE Transaction on Information Theory,2006,52 (4):1289-1306.
  • 4Baraniuk R.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 5Candes E,Wakin M B.An introduction to compressive sampling:A sensing/sampling paradigm that goes against the common knowledge in data acquisition[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
  • 6Donoho D.For most large underdetermined systems of linear equations,the minimal ell-1 norm near-solution approximates the sparsest near-solution[J].Communications on Pure and Applied Mathematics,2006,59(7):907-934.
  • 7潘汇,张劲东,张弓.压缩感知雷达感知矩阵优化[J].数据采集与处理,2012,27(2):138-143. 被引量:4
  • 8刘丹华,石光明,周佳社,高大化,吴家骥.基于Compressed Sensing框架的图像多描述编码方法[J].红外与毫米波学报,2009,28(4):298-302. 被引量:21
  • 9赵春晖,刘巍.基于交织抽取与分块压缩感知策略的图像多描述编码方法[J].电子与信息学报,2011,33(2):461-465. 被引量:7
  • 10Gan L.Block compressed sensing of natural images[C]// The 15th International Conference on Digital Signal Processing.Cardiff,UK:IEEE,2007:403-406.

二级参考文献52

  • 1郁梅,蒋刚毅,贺赛龙.多描述视频编码方法研究[J].电路与系统学报,2005,10(1):76-84. 被引量:7
  • 2Goyal V K. Multiple description coding : Compression meets the network [ J ]. IEEE Signal Processing Magazine ,2001, 18(5) :74--93.
  • 3Wang Y, Lin S N. Error-resilient video coding using multiple description motion compensation [ J ]. IEEE Trans. Circuits and Systems for Video Technology,2002,12(6) :438-- 452.
  • 4Vaishampayan V A. Design of multiple description scalar quantizers [ J ]. IEEE Trans. Inform. Theory, 1993,39 ( 3 ) : 821--834.
  • 5Fleming M, Effros M. Generalized multiple description vector quantization [ C ]. Proceedings of the IEEE Data Compression Conference, DCC'99, Snowbird, UT, USA, 29-- 31 March, 1999:3--12.
  • 6Wang Y, Orchard M T, Vaishampayan V A, et al. Multiple description coding using pairwise correlating transforms[ J]. IEEE Transon Image Processing,2001,10(3) :351--366.
  • 7Purl R, Ramchandran K. Multiple description source coding using forward error correction[ C]. The 33rd Asilomar Conference on Signals, Systems and Computer, 1999,1 : 342-- 346.
  • 8Sarshar N, Wu X L. A practical approach to joint networksource coding [ C ]. Proceedings of the Data Compression Conference ( DCC' 06) ,2006:93--102.
  • 9Candes E J. Compressive sampling[ C]. Proceedings of International Congress of Mathematics ,2006,3 : 1433--1452.
  • 10Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[ J ]. IEEE Trans. on Information Theory,2006,52 (2) :489--509.

共引文献24

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部