期刊文献+

基于灰色粒子群神经网络的航天器参量预测

Prediction Based on Particle Swarm Optimization-Grey Neural Network of Spacecraft Parameter Values
下载PDF
导出
摘要 针对航天器精确预测与健康管理的需求,将粒子群算法、灰色理论与神经网络的优势相结合,提出了一种灰色粒子群神经网络组合参量预测方法,实现了灰色模型、粒子群算法、神经网络模型的优势互补。针对某卫星南帆板输出电流参量的预测实例,采用总平均绝对误差、总平均绝对百分比误差、总均方根误差3个预测结果评价指标,对灰色粒子群神经网络模型、粒子群神经网络模型、灰色模型和残差修正灰色模型的预测结果进行了比较,结果证明灰色粒子群神经网络模型的预测精度较高,在航天器参量预测领域具有很好的应用前景。 Aiming at the requirements of precise prediction and health management of spacecraft, a method for combinational prediction of parameter values called particle swarm optimization-grey neural network is promoted. The method enables particle swarm optimization algorithms, grey theory and neural network to complement each other. Firstly, a prognosis for output current values of southern sailboard of a certain satellite is taken as an example. Then, three evaluation indexes of prediction, including mean absolute error, mean absolute percentage error and root mean square error, are chosen to evaluate the results of different step-length prediction is of particle swarm optimization-fuzzy neural network. The results show that the particle swarm optimization-fuzzy neural network is effective. Secondly, the mean absolute percentage errors of particle swarm optimization-fuzzy neural network, grey model-particle swarm optimization neural network, particle swarm optimization neural network and grey model are calculated. The results show that the model of particle swarm optimization-fuzzy neural network is the most precise one and more efficient in prediction than others. It has vast application prospects in the field of prediction of spacecraft parameter values.
作者 顾胜 魏蛟龙
出处 《数据采集与处理》 CSCD 北大核心 2014年第5期828-832,共5页 Journal of Data Acquisition and Processing
关键词 航天器 粒子群优化 灰色理论 神经网络 spacecraft particle swarm optimization grey theory neural network
  • 相关文献

参考文献14

  • 1Rehage D,Carl U B,Vahl A.Redundancy management of fault tolerant aircraft system architectures-reliability synthesis and analysis of degraded system states[J].Aerospace Science and Technology,2005,9(4):337-347.
  • 2Varma S,Kumar K D.Fault tolerant satellite attitude control using solar radiation pressure based on nonlinear adaptive sliding mode[J].Acta Astronautica,2010,66(3/4):486-500.
  • 3Jin J,Ko S,Ryoo C.Fault tolerant control for satellites with four reaction wheels[J].Control Engineering Practice,2008,16(10):1250-1258.
  • 4Dimogianopoulos D,Hios J,Fassois S.Aircraft engine health management via stochastic modeling of flight data interrelations[J].Aerospace Science and Technology,2012,16(1):70-81.
  • 5薛薇,郭迎清.Aircraft Engine Sensor Fault Diagnostics Based on Estimation of Engine's Health Degradation[J].Chinese Journal of Aeronautics,2009,22(1):18-21. 被引量:9
  • 6谷吉海,姜兴渭,巴兴强,范显峰,黄文虎.动态新息GM(1,1)在卫星电池阵功率预测中的应用[J].哈尔滨工业大学学报,2003,35(1):28-30. 被引量:3
  • 7邓聚龙.灰色论基础[M].武汉:华中科技大学出版社,2002.158-166.
  • 8Chiang J Y,Chen C K.Application of grey prediction to inverse nonlinear heat conduction problem[J].International Journal of Heat and Mass Transfer,2008,51(3/4):576-585.
  • 9Lin Chiunsin,Liou Fenmay,Huang Chihpin.Grey forecasting model for CO2 emissions:A Taiwan study[J].Applied Energy,2011,88 (11):3816-3820.
  • 10Huang Changjun,Tang Zhengqi.Application of improved error GM (1,1) model on predicting of cultivated land in Yiyang[J].Energy Procedia,2011,(5):1172-1176.

二级参考文献5

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部