期刊文献+

Myring型回转体直航阻力计算及艇型优化 被引量:14

Direct route drag calculation and shape optimization of Myring shape axisymmetric revolution body
下载PDF
导出
摘要 在水下智能机器人(AUV)方案设计阶段,针对如何在主尺度和巡航速度确定的前提下得到直航阻力最小的回转体形状这个问题,以Myring型回转体为研究对象,利用计算流体力学(CFD)方法计算其在水中做匀速直航运动时的阻力并与试验值比较以验证准确性。分别对二维和三维2种网格形式,标准和加强2种壁面函数的计算精度和计算效率进行了对比,并在此基础上探讨单独改变艏部或艉部形状时阻力的变化规律。再利用EXCEL、ICEM、FLUENT建立优化平台,基于多岛遗传算法在限制条件范围内对Myring型回转体参数进行全局寻优,寻找不同流速时阻力最小的Myring型回转体,为AUV设计阶段的阻力性能预报和艇型优化提供参考。 When main dimensions and cruising speed have been predefined, how to get an axisymmetric revolution body with minimal drag force at the conceptual design stage of autonomous underwater vehicles ( AUVs) has been a problem. This paper analyzed drag force of Myring shaped axisymmetric revolution body moving underwater in a direct route, at constant speed, by CFD method and compared with the experiment value to check the veracity. 2D or 3D mesh, standard or enhanced wall treatment function was adopted respectively to figure out the accuracy and effciency. And on this basis, the change law of drag when changing merely length and shape of the nose or tail was discussed. Based on multiisland and genetic algorithm ( MIGA ) , an optimization platform was constructed with EXCEL, ICEM and FLUENT to search for the best axisymmetric revolution body with minimal drag force at different speed when volume is predefined. This is a good reference for calculating and minimizing total drag of AUVs.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2014年第9期1093-1098,共6页 Journal of Harbin Engineering University
基金 国防科学工业委员会基础研究基金资助项目(9140C270305120C2701 A2420110001)
关键词 水下智能机器人 回转体 阻力 模型试验 多岛遗传算法 流体力学 网格生成 壁面函数 autonomous underwater vehicles (AUV) revolution body drag model test multi-island and geneticalgorithm (MIGA) fluid dynamics mesh generation wall function
  • 相关文献

参考文献11

  • 1MYRING D F. A theoretical study of body drag in subcriti-cal axisymmetric flow [J]. Aeronautical Quarterly, 1976,27(3) : 186-194.
  • 2杜月中,闵健,郭字洲.流线型回转体外形设计综述与线型拟合[J].声学技术,2004,23(2):93-97. 被引量:32
  • 3吴宝山,潘子英,夏贤,洪方文.水滴型回转体带尾导管的水动力特性研究(英文)[J].船舶力学,2003,7(6):54-59. 被引量:4
  • 4De BARROS E A, PASCOAL A, De SA E. Investigation ofa method for predicting AUV derivatives [ J] . Ocean Engi-neering ,2008,35: 1627-1636.
  • 5PRESTERO T. Verification of a six-degree of freedom simula-tion model for the REMUS autonomous underwater vehicle[D]. California: University of California, 1994 : 25-27.
  • 6Open Foam user guide, version 2.1.1 [EB/OL]. (2012-12-05 ) . http ://www. openfoam. com.
  • 7王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.126-131,147-148.
  • 8DeBARROS E A,DANTAS J L D. Effect of a propellerduct on AUV maneuverability [ J ]. Ocean Engineering,2012,42: 61-70.
  • 9SALIMM S’ CHEAH S C.Wally+strategy for dealing withwall-bounded turbulent flows [ C ]//Proceedings of the In-ternational Multiconference of Engineers and Computer Sci-entists. Hong Kong,2009( 2) : 2165-2170.
  • 10MULVANY N J, CHEN Li, TU Jiyuan,et al. Steady-stateevaluation of two equation rans turbulence models for high-Reynolds number hydrodynamic flow simulations [ R] . Vic-toria: DSTO Platform Sciences Laboratory, 2004; 14-15.

二级参考文献13

  • 1宋保维,李福新.回转体最小阻力外形优化设计[J].水动力学研究与进展(A辑),1994,9(5):523-530. 被引量:19
  • 2[1]Li Tiansen. Torpedo maneuverability[M]. (In Chinese) China National Defense Industry Press, 1999.
  • 3[2]Roddy Robert F. Investigation of the stability and control characteristics of several configurations of the DARPA SUBOFF model (DTRC model 5470) from captive-model experiments[R]. AD-A227 715,1990.
  • 4[3]Tang Denghai. Design of an axis-symmetric hull and its stern ring wing[R]. CSSRC Report No.02015 (In Chinese), 2002.
  • 5[4]Xia Xian, et al. Experimental study on the fluid dynamics of a body of revolution with stern wings, part 1: fluid-dynantic forces[R]. CSSRC Report No.03130 (In Chinese), 2002.
  • 6[5]Xia Xian, et al. Experimental study on the fluid dynamics of a body of revolution with stern wings, part 2: surface pressure distribution[R]. CSSRC Report (In Chinese), 2002.
  • 7[6]Hong Fangwen. Prediction of the flow around a body of revolution with stem wings with CFD[R]. CSSRC Report No. 03123 (In Chinese), 2002.
  • 8[7]Pan Ziying. Investigation of CFD application to prediction of the hydrodynamic forces on submersible vehicles at angles of attack[R]. CSSRC Report No. 03298 (In Chinese),2003.
  • 9[8]Tian Yukui. Wind tunnel test report of a torpedo-like body with a duct[R]. CSSRC Report No. 02254 (In Chinese), 2003.
  • 10[9]Parlett Lysle P. Aerodynamic Characteristic of a Small-Scale Shrouded Propeller at Angles of Attack from 0° to 90°[Z]. NACA TN3547, 1957.

共引文献1259

同被引文献91

引证文献14

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部