期刊文献+

端基改性碳纳米管膜分离Li^+/Mg^(2+)的分子动力学模拟 被引量:1

Molecular Dynamics Simulation of Tip Functionalized Carbon Nanotube Membrane for Li^+/ Mg^(2+) Separation
下载PDF
导出
摘要 通过向"扶手椅"型(10,10)碳纳米管一端添加不同数量的COO-和NH+3修饰基团建立连续的碳纳米管膜模型,利用分子动力学模拟的方法研究了80 MPa水压力下Li+和Mg2+在膜中的通量和密度分布并计算了两种离子进入修饰碳纳米管的平均力势。结果表明,恰当的修饰基团添加使(10,10)碳纳米管能够有效分离Li+和Mg2+。带电基团与离子间静电作用力所产生的束缚和排斥作用使离子在纳米管内通量下降,Mg2+在修饰纳米管中的通量均为0,添加8个COO-以及4个NH+3基团均能完全阻挡两离子通过,在添加1个COO-和1个NH+3基团的情况下,Li+通量达到最大,具有最佳分离效果。因此,添加特定带电修饰基团可有效改善较大直径碳纳米管膜对Li+和Mg2+的分离性能,修饰基团电荷性质和数量对分离效果影响很大。 Using molecular dynamics simulations, membrane formed from armchair type (10,10) carbon different charged functional groups including COO- we studied the transport of Li~ and Mg2+ through nanotubes whose top rims were modified with a range of and NH3+ under 80 MPa hydrostatic pressure, and investigated the potential of mean force, conductance and density distributions of ions in the carbon nanotubes. The results show that appropriately modified (10,10) carbon nanotubes can effectively extract Li+. The bound and rejection effects produced by electrostatic interaction between charged groups and ions reduce the conductance of ions in the tubes. Mg2+ can permeate the functionalized carbon nanotubes and Li are also completely blocked with the addition of 8C00- and 4NH3. The maximum conductance of Li+ are found in carbon nanotubes modified with 1 COO- and 1 NH3 functional groups which can most effectively separate Li + and Mg2+. Therefore, through addition of specific charged modified groups, the separation performance of large diameter carbon nanotube to Li+ and Mg2+ can be effectively improved. Charge properties and the quantity of modification groups greatly affect the separation effects.
出处 《应用化学》 CAS CSCD 北大核心 2014年第11期1345-1351,共7页 Chinese Journal of Applied Chemistry
基金 国家重大基础研究计划(973)(2009CB623402) 国家青年自然科学基金资助项目(21306096)资助项目~~
关键词 锂离子 镁离子 碳纳米管 分子动力学模拟 lithium ion, magnesium ion, carbon nanotube, molecular dynamics simulation
  • 相关文献

参考文献26

  • 1Kushnir D,Sanden B A. The Time Dimension and Lithium Resource Constraints for Electric Vehicles[J]. Resour Policy,2012,37:93-103.
  • 2Ebensperger A,Maxwell P,Moscoso C. The Lithium Industry: Its Recent Evolution and Future Prospects[J]. Resour Policy,2005,30(3):218-231.
  • 3Zheng M,Liu X. Hydrochemistry of Salt Lakes of the Qinghai-Tibet Plateau, China[J]. Aquat Geochem,2009,15(1):293-320.
  • 4Hamzaoui A H,M'nif A,Hammi H,et al. Contribution to the Lithium Recovery from Brine[J]. Desalination,2003,158(1/3):221-224.
  • 5Wang L,Meng C G,Ma W. Study on Li+ Uptake by Lithium Ion-sieve via the pH Technique[J]. Colloids Surf,A,2009,334(1/3):34-39.
  • 6Umeno A,Miyai Y,Takagi N,et al. Preparation and Adsorptive Properties of Membrane-type Adsorbents for Lithium Recovery from Seawater[J]. Ind Eng Chem Res,2002,41(17):4281-4287.
  • 7Tsuchiya S,Nakatani Y,Ibrahim R,et al. Highly Efficient Separation of Lithium Chloride from Seawater[J]. J Am Chem Soc,2002,124(18):4936-4937.
  • 8Thomas J A,McGaughey A J H,Kuter-Arnebeck O. Pressure-driven Water Flow through Carbon Nanotubes:Insights from Molecular Dynamics Simulation[J]. Int J Therm Sci,2010,49(2):281-289.
  • 9McGinnis R L,McCutcheon J R,Elimelech M. Desalination by Ammonia-Carbon Dioxide Forward Osmosis:Influence of Draw and Feed Solution Concentrations on Process Performance[J]. J Membr Sci,2006,278(1/2):114-123.
  • 10Holt J K,Park H G,Wang Y,et al. Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes[J]. Science,2006,312:1034-1037.

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部