期刊文献+

基于多代表点学习的RSKNN分类算法

Multi-Representatives Learning Algorithm for RSKNN Classification
下载PDF
导出
摘要 RSKNN算法是一种基于变精度粗糙集理论的k-近邻改进算法,该算法能够保证在一定分类精度的前提下,有效地降低分类的计算量,提高分类效率.但由于RSKNN算法只是简单地将每个类中的样本划分成一个核心和边界区域,并没有根据数据集本身的特点进行划分,因而存在极大的局限性.针对存在的问题,提出一种多代表点学习算法,运用结构风险最小化理论对影响分类模型期望风险的因素进行分析,并使用无监督的局部聚类算法学习优化代表点集合.在UCI公共数据集上的实验表明,该算法比RSKNN算法具有更高的分类精度. RSKNN is an improved kNN algorithm based on variable parameter rough set model. The algorithm guarantees under the premise of a certain classification accuracy, effectively reduces the computation burden of the classified samples, and improves the computation efficiency and precision of classification. But in this algorithm ,the instances of each class are simply classified into core and boundary areas. It has the limitation that it isn’t classified according the features of datasets. An efficient algorithm aiming at learning multi-representatives for RSKNN is proposed. Using the theory of structural risk minimization, a few factors that determine the expected risk of new classification model are analyzed. And an unsupervised algorithm for partial clustering is used to build an optimal set of representatives. Experimental results on UCI public datasets demonstrate that the proposed method significantly improves the accuracy of the classification.
出处 《计算机系统应用》 2014年第11期92-98,共7页 Computer Systems & Applications
基金 国家自然科学基金(61175123)
关键词 近邻分类 变精度粗糙集 代表点 分类模型 下近似 nearest neighbor classification variable precision rough set representative classification model upper and lower approximation
  • 相关文献

参考文献11

  • 1Yang Q,Wu X. 10 challenging problems in data miningresearch. International Journal of Information Technology &Decision Making, 2006, 5(4): 597-604.
  • 2李荣陆,胡运发.基于密度的kNN文本分类器训练样本裁剪方法[J].计算机研究与发展,2004,41(4):539-545. 被引量:98
  • 3余鹰,苗夺谦,刘财辉,王磊.基于变精度粗糙集的KNN分类改进算法[J].模式识别与人工智能,2012,25(4):617-623. 被引量:32
  • 4Guo Q Wang H,Bell D, et al. KNN model-based approach inclassification. On The Move to Meaningful Internet Systems2003: CoopIS, DOA, and ODBASE. Springer BerlinHeidelberg, 2003: 986-996.
  • 5Guo Q Wang H, Bell D, et al. Using kNN model for automatictext categorization. Soft Computing, 2006,10(5): 423-430.
  • 6陈黎飞,郭躬德.最近邻分类的多代表点学习算法[J].模式识别与人工智能,2011,24(6):882-888. 被引量:18
  • 7Pawlak Z. Imprecise Categories,Approximations and RoughSets. Springer Netherlands, 1991.
  • 8Ziarko W. Variable precision rough set model. Journal ofComputer and System Sciences, 1993,46(1): 39-59.
  • 9Kotsiantis S,Pintelas P. Recent advances in clustering: A briefsurvey. WSEAS Trans, on Information Science andApplications, 2004,1(1): 73-81.
  • 10Burges CJC. A tutorial on support vector machines forpattern recognition. Data Mining and KnowledgeDiscovery, 1998,2(2): 121-167.

二级参考文献40

  • 1苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:389
  • 2王煜,白石,王正欧.用于Web文本分类的快速KNN算法[J].情报学报,2007,26(1):60-64. 被引量:33
  • 3[1]D D Lewis. Naive (Bayes) at forty: The independence assumption in information retrieval. In: The 10th European Conf on Machine Learning(ECML98), New York: Springer-Verlag, 1998. 4~15
  • 4[2]Y Yang, X Lin. A re-examination of text categorization methods. In: The 22nd Annual Int'l ACM SIGIR Conf on Research and Development in Information Retrieval, New York: ACM Press, 1999
  • 5[3]Y Yang, C G Chute. An example-based mapping method for text categorization and retrieval. ACM Trans on Information Systems, 1994, 12(3): 252~277
  • 6[4]E Wiener. A neural network approach to topic spotting. The 4th Annual Symp on Document Analysis and Information Retrieval (SDAIR 95), Las Vegas, NV, 1995
  • 7[5]R E Schapire, Y Singer. Improved boosting algorithms using confidence-rated predications. In: Proc of the 11th Annual Conf on Computational Learning Theory. Madison: ACM Press, 1998. 80~91
  • 8[6]T Joachims. Text categorization with support vector machines: Learning with many relevant features. In: The 10th European Conf on Machine Learning (ECML-98). Berlin: Springer, 1998. 137~142
  • 9[7]S O Belkasim, M Shridhar, M Ahmadi. Pattern classification using an efficient KNNR. Pattern Recognition Letter, 1992, 25(10): 1269~1273
  • 10[8]V E Ruiz. An algorithm for finding nearest neighbors in (approximately) constant average time. Pattern Recognition Letter, 1986, 4(3): 145~147

共引文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部