期刊文献+

基于深度信息的快速身份识别方法 被引量:2

Rapid Person Identification Method Based on Depth Information
下载PDF
导出
摘要 采用传统视频信号进行身份识别时,易受遮挡、复杂背景等因素干扰的问题,本文提出一种利用Kinect深度信息进行身份快速鉴别的方法.首先利用微软Kinect设备获取人体俯视图(深度图像),然后根据深度信息提取以下特征:(1)身高,(2)肩宽,(3)深度直方图,根据人体生理结构的差异达到判别人身份的目的.实验结果表明,该方法计算简单,具有较高的识别精度和较强的鲁棒性. Traditional person identification methods have a low tolerance for occluded situation and complicated background. We focus on an image from an overhead camera.we utilize depth information for the person identification. We apply three features to the identification method:(1)the height, (2)shoulder width, (3)depth histogram. Experimental result shows our method has higher accuracy, strong robust-ness and good real-time with the existing methods of person identification.
出处 《计算机系统应用》 2014年第11期132-135,共4页 Computer Systems & Applications
基金 中央高校基本科研基金(10611201312014)
关键词 深度图像 深度直方图 身份识别 Kinect Kinect depth information depth histogram person identification
  • 相关文献

参考文献7

  • 1王跃明,潘纲,吴朝晖.三维人脸识别研究综述[J].计算机辅助设计与图形学学报,2008,20(7):819-829. 被引量:64
  • 2Introducing Kinect for Xbox360. ht^p: //www.xbox.com/en-US/kinect [2012-08-10].
  • 3Stowers J,Hayes M. Altitude control of a quadrotorhelicopter using depth map from Microsoft Kinect sensor.2011IEEE International Conference on Mechatronics(ICM).IEEE, 2011.358-362.
  • 4王健,王孝通,徐晓刚,李博.基于梯度的随机Hough快速圆检测方法[J].计算机应用研究,2006,23(8):164-165. 被引量:17
  • 5Luciano S, Arras KO. People detection in RGB-D data.Intelligent Robots and Systems, IROS 2011. 3838-3843.
  • 6Matas J, Chum O, Urban M. Robust wide baseline stereofrom maximally stable extremal regions. Image and sionComputing, 2010,22(10): 761-767.
  • 7呙维,胡涛,朱欣焰.基于Kinect的深度数据融合方法[J].计算机应用研究,2014,31(1):285-288. 被引量:7

二级参考文献83

  • 1柳杨.三维人脸识别算法综述[J].系统仿真学报,2006,18(z1):400-403. 被引量:7
  • 2宋涛,欧宗瑛,王瑜,李冠华,刘斌.八叉树编码体数据的快速体绘制算法[J].计算机辅助设计与图形学学报,2005,17(9):1990-1996. 被引量:24
  • 3Illingworth J, Kittler J. A Survey of the Hough Transform[J].Comput. Vision Graphics Image Process, 1988,44( 1 ) :87-116.
  • 4Xu L, Oja E. A New Curve Detection Methed:Randomized Hough Transform (RHT)[J]. Pattern Recognition Letters, 1990, 11 ( 5 ) :331-338.
  • 5Xu L, Oja E, Kultanen P. Randomized Hough Transform (RHT):Basic Mechanisms, Algorithms, and Computational Complexities [ J ].Comput. Vision Graphics Image Process: Image Understanding, 1993,57(2) :131-154.
  • 6Zhao W, Chellappa R, Phillips P J, et al. Face recognition: a literature survey [J]. ACM Computing Surveys, 2003, 35 (4) : 399-458
  • 7Galton F. Numeralised profiles for classification and recognition[J]. Nature, 1910, 83(2109): 127-130
  • 8Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces, a survey [J]. Proceedings of the IEEE, 1995, 83(5): 705-741
  • 9Phillips P J, Flynn P J, Scruggs T, et al. Overview of the face recognition grand challenge [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, 2005, 1 : 947-954
  • 10Lee J C, Milios E. Matching range images of human faces [C]//Proceedings of International Conference on Computer Vision, Osaka, 1990:722-726

共引文献85

同被引文献15

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部