摘要
We propose an ultra-wideband optical diode device based on two-dimensional square-lattice photonic crystals. For the device, the odd mode is completely transmitted in one direction and converted to the fundamental even mode, but completely reflected in the other direction. The operation bandwidth of the device is preserved within a rather wide range of frequencies, which is over 6.5% of the central frequency. A directional coupler and 90° bend are utilized as the composite function device with mode filter and mode converter. It is possible that the photonic crystal device can help to construct on-chip optical logical devices and benefit greatly to the optical systems with multiple spatial modes.
We propose an ultra-wideband optical diode device based on two-dimensional square-lattice photonic crystals. For the device, the odd mode is completely transmitted in one direction and converted to the fundamental even mode, but completely reflected in the other direction. The operation bandwidth of the device is preserved within a rather wide range of frequencies, which is over 6.5% of the central frequency. A directional coupler and 90° bend are utilized as the composite function device with mode filter and mode converter. It is possible that the photonic crystal device can help to construct on-chip optical logical devices and benefit greatly to the optical systems with multiple spatial modes.
基金
supported in part by the National Natural Science Foundation of China(Nos.60907032,61205121,and 61275124)
the China Postdoctoral Science Foundation(No.2013M540361)
the Natural Science Foundation of Zhejiang Province(No.LY13F010011)
the Zhejiang Youth Science Fund(No.LQ13F050005)