期刊文献+

Impact of spontaneous Raman scattering on quantum channel wavelength-multiplexed with classical channel in time domain 被引量:2

Impact of spontaneous Raman scattering on quantum channel wavelength-multiplexed with classical channel in time domain
原文传递
导出
摘要 In the quantum key distribution system, quantum channel is always affected by spontaneous Raman scattering noise when it transmits with classical channels that act as synchronization and data channels on a shared fiber. To study the effect of the noise exactly, the temporal distribution characteristics of the Raman scattering noise are analyzed theoretically and measured by a single-photon detector. On the basis of this, a scheme to decrease the noise is proposed. In the quantum key distribution system, quantum channel is always affected by spontaneous Raman scattering noise when it transmits with classical channels that act as synchronization and data channels on a shared fiber. To study the effect of the noise exactly, the temporal distribution characteristics of the Raman scattering noise are analyzed theoretically and measured by a single-photon detector. On the basis of this, a scheme to decrease the noise is proposed.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第10期112-115,共4页 中国光学快报(英文版)
基金 supported by the Major Research Plan of the National Natural Science Foundation of China(No.91121023) the National Natural Science Foundation of China(Nos.61108039 and 60978009) the National "973" Project of China(No.2011CBA00200)
关键词 Communication channels (information theory) Particle beams PHOTONS Quantum communication Quantum entanglement Raman scattering Communication channels (information theory) Particle beams Photons Quantum communication Quantum entanglement Raman scattering
  • 相关文献

参考文献12

  • 1F. Z. Guo, S. J. Qin, Q. Y. Wen, and F. C. Zhu, Chin. Phys. Lett. 27, 090307 (2010).
  • 2Z. Zhao, Y. Luo, Z. Zhao, and H. Long, Chin. Opt. Lett. 9, 032702 (2011).
  • 3R. Z. Jiao, C. Zhang, and H. Q. Ma, Acta Phys. Sin. 60, 110303 (2011).
  • 4G. Xin, L. Shen, H. Pi, D. Chen, H. Cai, H. Feng, J. Geng, R. Qu, G. Chen, Z. Fang, and W. Chen, Chin. Opt. Lett. 10, 101403 (2012).
  • 5L. H. Gong, N. R. Zhou, L. Y. Hu, and H. Y. Fan, Chin. Phys. B 21, 080302 (2012).
  • 6F. Tang and B. Zhu, Chin. Opt. Lett. 11, 090101 (2013).
  • 7L. Liu, M. Zhang, M. Liu, and X. Zhang, Chin. Opt. Lett. 10, 070608 (2012).
  • 8T. E. Chapuran, P. Toliver, N. A. Peters, J. Jacke, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, New J. Phys. 11, 10500l (2009).
  • 9N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, New J. Phys. 11, 045012 (2009).
  • 10H. Kawahara, A. Medhipour, and K. Inoue, Opt. Commun. 28, 4691 (2011).

同被引文献7

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部