期刊文献+

二元收-扩喷管气动喉道控制数值模拟 被引量:1

Numerical simulation of two-dimensional convergent-divergent nozzle with pneumatic throat control
原文传递
导出
摘要 设计了收敛段为圆转方段的二元收-扩喷管,对喉道面积气动射流控制方案进行了数值模拟,分析了喷管出口宽高比、落压比、射流角度对喉道面积和喷管性能的影响.结果表明:喷管喉道矩形截面宽边壁面附近的静压小于窄边壁面附近的静压,并且随着出口宽高比的增大,宽边壁面附近的静压逐渐减小,窄边壁面附近的静压逐渐增大;在同样的落压比下,出口宽高比增大,喉道面积控制范围(RTAC)、喉道面积控制效率(ETAC)增大,总压恢复系数减小;出口宽高比一定时,随落压比的增大,RTAC,ETAC先减小而后基本保持不变,总压恢复系数增大;ETAC随射流角度的增大而增大. The two-dimensional convergent-divergent nozzle with a circle-to-square con- vergent part was designed. The project of the throat area control with pneumatic injection was numerical simulated. The influences of nozzle exit width-to-height ratio, pressure drop ratio and injection angle on the throat area and nozzle performance were analyzed. The results show that the static pressure near the wide side in the rectangular nozzle throat sec- tion is lower than that near the narrow side. The static pressure near the wide side decreases and that near the narrow side increases with the increase of exit width-to-height ratio. At the same pressure drop ratio, the range of throat area control (RTAC) and the efficiency of throat area control (ETAC) increase while the nozzle coefficient of total pressure recovery decreases with the increase of exit width-to-height ratio. At a fixed exit width-to-height ratio, RTAC and ETAC decrease firstly and then keep at the same level while the nozzle coeffi- cient of total pressure recovery increases with the increase of pressure drop ratio. ETAC increases with the increase of injection angle.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2014年第10期2303-2310,共8页 Journal of Aerospace Power
关键词 二元收-扩喷管 圆转方 气动喉道 喉道面积控制 射流 two-dimensional convergent-divergent nozzle circle-to-squarepneumatic throat; throat area control; injection
  • 相关文献

参考文献13

二级参考文献49

  • 1邹欣华,王强.带喉道注气的轴对称收扩喷管内流场计算研究[J].航空动力学报,2009,24(9):2078-2084. 被引量:3
  • 2罗静,王强,额日其太.两种流体控制方案矢量喷管内流场计算及分析[J].北京航空航天大学学报,2004,30(7):597-601. 被引量:17
  • 3王全,王强.激波诱导二元矢量喷管内流特性数值研究[J].航空动力学报,2006,21(4):681-685. 被引量:17
  • 4Reginald G W, Baily R V. Fluidic thrust vectoring and throat control exhaust nozzle[R]. AIAA-2002-4060, 2002.
  • 5Miller D N, Yagle P J, Hamstra J W. Fluidic throat skewing for thrust vectoring in fixed geometry nozzies[R].AIAA-99-0365, 1999.
  • 6Miller D N, Catt J A. Conceptual development of fixed-geometry nozzles using fluidic injection for throat area control[R]. AIAA-95-2603, 1995.
  • 7Catt J A, Miller D N. A static investigation of fixed geometry nozzles using fluidie injection for throat area control[R]. AIAA-95-2604,1995.
  • 8Waithe K A, Deere K A. Experimental and computational investigation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring[R]. AIAA- 2003-3802, 2003.
  • 9付尧明,王强,额日其太,基于流体控制方式的先进排气系统技术研究进展和展望[A].雄县:2001年弹用吸气式发动机技术交流会论文集[C],2001.
  • 10Deere Karen A. Summary of fluidic thrust vectoring research conducted at NASA langley research center [ R]. AIAA 2003-3800.

共引文献33

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部