期刊文献+

基于层次化分类器的遥感图像飞机目标检测 被引量:11

Aircraft Detection in Remote Sensing Image Based on Hierarchical Classifiers
下载PDF
导出
摘要 在大量航空航天遥感图像中,快速发现和统计飞机目标并对其进行准确定位,在军事和民用方面均具有重要意义。结合遥感图像特点,针对飞机目标的特征,文章设计了一种基于层次化的分类器的遥感图像飞机目标检测方法。首先用基于哈尔(Haar)特征的底层AdaBoost分类器快速去除大部分非目标区域;然后用基于梯度方向直方图(Histogram of Oriented Gradient,HOG)特征的顶层支持向量机(Support Vector Machine,SVM)分类器进行精细检测。在分辨率为1m的遥感图像数据集上的实验结果表明,层次化分类器在保证较高检测率的前提下,大大降低了虚警率,可以有效解决遥感图像飞机检测问题。 Quick finding and counting aircraft objects and acquiring their accurate positions in a number of space and aviation remote sensing images, are of great significance both in military and civilian applica-tions.According to the characteristics of remote sensing images and the features of aircraft objects, a new method is designed for aircraft detection in remote sensing images which makes use of the hierarchical classi-fiers. Firstly, bottom AdaBoost classifiers based on Haar features are used to quickly filter out most of the non-aircraft areas.Then top SVM (Support Vector Machine) classifiers based on HOG (Histogram of Oriented Gradient) features are applied for fine recognition.The experimental results in remote sensing image dataset with the resolution of 1m show that hierarchical classifiers can greatly reduce the false alarm rate with high detection rate, so this method can effectively solve the problem of aircraft detection in remote sensing image.
出处 《航天返回与遥感》 2014年第5期88-94,共7页 Spacecraft Recovery & Remote Sensing
关键词 飞机目标 图像特征检测 层次化分类器 航天遥感 aircraft object image feature detection hierarchical classifiers space remote sensing
  • 相关文献

参考文献14

  • 1Leitloff J, Hinz S, Stilla U. Vehicle Detection in Very High Resolution Satellite Images of City Areas[J]. Geoscience and Re- mote Sensing, 1EEE Transactions on, 2010, 48(7): 2795-2806.
  • 2王树国,黄勇杰,张生.可见光图像中飞机目标的特征选择及提取[J].哈尔滨工业大学学报,2010,42(7):1056-1059. 被引量:10
  • 3Freund Y, Schapire R E.A Desicion-theoretic Generalization of On-line Learning and an Application to Boosting[C]. Compu- tational Learning Theory, Springer Berlin Heidelberg, 1995: 23-37.
  • 4Cortes C, Vapnik V. Support-vector Networks[J]. Machine Learning, 1995, 20(3): 273-297.
  • 5Viola P, Jones M. Robust Real-time Object Detection[J]. International Journal of Computer Vision, 2001, 4: 34-47.
  • 6Tuia D, Pacifici F, Kanevski M, et al. Classification of Very High ASpatialResolution Imagery Using Mathematical Morphol- ogy and Support Vector Machines[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2009, 47(11): 3866-3879.
  • 7Cai H, Su Y. Airplane Detection in Remote Sensing Image with a Circle-frequency Filter[C]. International Conference on Space Information Technology. Bellingham: Proc. SPIE, 2005: 59852T-1-59852T-6.
  • 8杨萍,姜志国,刘滨涛.一种遥感图像建筑物检测新方法[J].航天返回与遥感,2013,34(5):70-77. 被引量:10
  • 9Liu G, Sun X, Fu K, et al. Aircraft Recognition in High-resolution Satellite Images Using Coarse-to-fine Shape Prior[J]. Geo- science and Remote Sensing Letters, IEEE, 2013, 10(3): 573-577.
  • 10韩现伟,付宜利,李刚.基于改进Hough变换和图搜索的油库目标识别[J].电子与信息学报,2011,33(1):66-72. 被引量:15

二级参考文献44

共引文献42

同被引文献94

  • 1张国清,武向荣.高分辨率商业遥感卫星的发展及军事应用[J].现代军事,2002,0(6):38-41. 被引量:5
  • 2严军,王典洪.基于支持向量机的舰船图像识别[J].光学与光电技术,2004,2(4):54-57. 被引量:5
  • 3DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [ C l// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washing- ton, DC: IEEE Computer Society, 2005, 1:886-893.
  • 4FENSZWALB P F, GIRSHICK R B, MCALLETER D, et al. Ob- ject detection with discriminatively trained part-based models [ J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2010, 32(9) : 1627 - 1645.
  • 5LOVE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2) : 91 - 110.
  • 6PANDEY M, LAZEBNIK S. Scene cognition and weakly super- vised object localization with deformable part-based models [ C]// Proceedings of the 2011 International Conference on Computer Vi- sion. Washington, DC: IEEE Computer Society, 2011: 1307 - 1314.
  • 7AZIZPOUR H, LAPTEV I. Object detection using strongly-super- vised deformable part models [ C]// ECCV 2012: Proceedings of the 12th European Conference on Computer Vision, LNCS 7572. Berlin: Springer, 2012:836-849.
  • 8MALISIEWICZ T, GUPTA A, EFROS A A. Ensemble of exem- plar-SVMs for object detection and beyond [ C]// Proceedings of the 2011 International Conference on Computer Vision. Washing- ton, DC: IEEE Computer Society, 2011:89-96.
  • 9PARK D, RAMANAN D, FOWLKES C. Multiresolution models for object detection [ C]// ECCV 2010: Proceedings of the 1 lth European Conference on Computer Vision, LNCS 6314. Berlin: Springer, 2010:241-254.
  • 10LU S X, WANG Z. A comparison among four SVM classification methods: LSVM, NLSVM, SSVM and NSVM [ C]// Proceedings of the 2004 International Conference on Machine Learning and Cy- beroetics. Piscataway, NJ: IEEE, 2004, 7:4277-4282.

引证文献11

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部