期刊文献+

逐步增加Ⅰ型混合截尾试验下B-S部件的可靠性分析 被引量:1

Reliability analysis for B-S components under progressive hybrid Type-Ⅰ censoring test
下载PDF
导出
摘要 在逐步增加Ⅰ型混合截尾试验下,利用最大期望(expectation maximization,EM)算法讨论了Birnbaum-Saunders(B-S)部件的参数及可靠度的估计问题。将B-S分布复杂的分布形式转换成较为简单的逆高斯分布和逆高斯分布倒数的等加权和形式,推导出逐步增加I型混合截尾中隐藏变量的后验密度,进而获得部件寿命参数和可靠度的极大似然估计和渐近置信区间。蒙特卡罗数值算例表明,简化后的B-S分布在逐步增加I型混合截尾试验方案中,EM算法经过较少迭代即达到收敛。同时,通过对数据情形I和情形Ⅱ下的估计结果分析,给出了较一般截尾试验方式更为丰富的结论,使得相应的统计结果更加全面和精确。 The estimators for the component parameters and reliability of Birnbaum-Saunders (B-S)distribution under the progressive hybrid Type Ⅰ censoring test are considered.B-S distribution is transferred to the mixture of inverse Gaussian and reciprocal of inverse Gaussian distribution with equal weight,and the posterior density function of potential variables and the pseudo log-likelihood function in progressive Type Ⅰ hybrid censoring are derived.In addition,the maximum likelihood estimation and asymptotic confidence interval for life parameters and reliability performance are obtained based on the pseudo log-likelihood function.The numerical example results of Monte-Carlo show that the expectation maximization (EM)algorithm has a better performance in convergence with fewer iteration steps for progressive hybrid Type-Ⅰ censoring,and more results of estimation are given compared with normal censoring by analysis of data Case Ⅰ and Case Ⅱ which get more accurate and complete statistical results.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第11期2326-2331,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(71171164) 西北工业大学创业种子基金(Z2013153)资助课题
关键词 逐步增加Ⅰ型混合截尾 Birnbaum-Saunders分布 最大期望算法 逆高斯分布 progressive hybrid Type-Ⅰ censoring (PHC-1) Birnbaum-Saunders (B-S) distribution expectation maximization (EM) algorithm inverse Gaussian distribution
  • 相关文献

参考文献12

  • 1Kundu D, Joarder A. Analysis of Type- II progressively hybrid censored data]]]. Computational Statistics and Data Analysis, 2006,50(0) :2509 -2528.
  • 2Childs A, Chandrasekar B, Balakrishnan N. Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes[J]. Statistical Models and Methods for Biomedical and Technical Systems ,2008, IV: 319 - 330.
  • 3Park S, Balakrishnan N, Kim S W. Fisher information in progressive hybrid censoring schemes[J]. Statistics: A Journal of Theoretical and Applied Statistics ,2011,45(6) :623 - 63l.
  • 4Lin C T, Huang Y L, Balakrishnan N. Exact Bayesian variable sampling plans for the exponential distribution with progressive hybrid censoring [J]. Journal of Statistical Computation and Simulation ,2011 ,81(7) :873 - 882.
  • 5Lin T C, Huang Y L. On progressive hybrid censored exponential distribution [J]. Journal of Statistical Computation and Simulation ,2012 ,82(5): 689 -709.
  • 6Salem A M, Abo-Kasem 0 E. Estimation for the parameters of the exponentiated Weibull distribution based on progressive hybrid censored samples [J]. International Journal of Contemporary Mathematical Sciences, 2011 ,6 (35) : 1713 - 1724.
  • 7Birnbaum Z W, Saunders S C. A new family of life distribution[J]. Applied Probability ,1969 ,6(2) :319 - 327.
  • 8Gupta R C, Akman O. On the reliability studies of a weighted inverse Gaussian model[J]. Journal of Statistical Planning and Inference, 1995,480) : 69 - 83.
  • 9Ng H K T, Chan P S, Balakrishnan N. Estimation of parameters from progressively censored data using EM algorithm[J]. Computational Statistics and Data Analysis, 2002, 39( 4) : 371 - 386.
  • 10Louis T A. Finding the observed information matrix when using the EM algorithm[J]. J ournal of the Royal Statistical Society, Series B (Methodological), 1982,44(2) : 226 - 233.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部