期刊文献+

分数阶光滑函数线性和二次插值公式余项估计 被引量:6

THE REMAINDER ESTIMATIONS FOR LINEAR AND QUADRATIC INTERPOLATIONS OF FRACTIONAL SMOOTH FUNCTIONS
原文传递
导出
摘要 本文在局部分数阶导数定义的基础上给出了高阶局部分数阶导数定义,并据此得到了一般形式的分数阶Taylor公式.用该公式给出了分数阶光滑函数线性和二次插值公式余项的表达式,并进一步导出了分段线性插值的收敛阶估计.针对分数阶导数临界阶计算困难的问题,本文利用线性插值余项设计了一种外推算法,能够比较准确地求出函数在某点的局部分数阶导数的临界阶.最后通过编写算法的Mathematica程序,验证了理论分析的正确性,并用实例说明了算法的有效性. This paper presents a definition for high order local fractional derivatives based on the local fractional derivative and from which a general form of the fractional Taylor's expansion is derived. The formula is used to derive the remainder expansions of linear and quadratic interpolations for fractional smooth functions. Further, the convergence order of piecewise linear interpolation for fractional smooth functions is obtained. For the problem of how to compute the critical orders efficiently, this paper designs an extrapolation algorithm to accurately evaluate the critical orders of local fractional derivative at the point where the function is not sufficiently smooth by using the remainder of linear interpolation. Finally, the correctness of the theoretical analysis is verified by implementing Mathematica program. Numerical examples also show that the method is effective.
出处 《计算数学》 CSCD 北大核心 2014年第4期393-406,共14页 Mathematica Numerica Sinica
基金 国家自然科学基金(11071123)资助项目
关键词 局部分数阶导数 分数阶Taylor公式 线性和二次插值余项 临界阶估计 local fractional derivative fractional Taylor's formula remainders of linear and quadratic interpolations critical order estimation
  • 相关文献

参考文献17

  • 1王兴华,杨义群.关于低度光滑函数的插值余项[J].高等学校计算数学学报,1983,5(3):193-203.
  • 2Gancho T. Tachev. Piecewise linear interpolation with nonequidistant nodes[J]. Numerical Func- tional Analysis and Optimization, 2000, 21(7-8): 945-953.
  • 3Francesc Arandiga. Interpolation and approximation of piecewise smooth functions[J]. SIAM Jour- nal on Numerical Analysis, 2006, 43(1): 41-57.
  • 4Shantanu Das. Functional fractional calculus[M]. Springer, 2011.
  • 5Kolwankar KM, Gangal AD. Fractional differentiability of nowhere differentiable functions and dimensions[J]. Chaos An Interdisciplinary Journal of Nonlinear Science, 1996, 6(4): 505-513.
  • 6Kolwankar KM, Gangal AD. HSlder exponents of irregular signals and local fractional deriva- tives[J]. Pramana- Journal of Physics, 1997, 48(1): 49-68.
  • 7Ben Adda F, Cresson J. About non-differentiable functions[J]. Journal of Mathematical Analysis and Applications, 2001, 263(2): 721-737.
  • 8Babakhani A, Daftardar-Gejji V. On calculus of local fractional derivatives[J]. Journal of Mathe- matical Analysis and Applications, 2002, 270(1): 66-79.
  • 9Yan Chen, Ying Yan, Kewei Zhang. On the local fractional derivative[J]. Journal of Mathematical Analysis and Applications, 2010, 362(1): 17-33.
  • 10Xiaojun Yang. Advanced local fractional calculus and its applications[M]. World Science Publisher, 2012.

共引文献9

同被引文献57

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部