期刊文献+

n维散乱数据带自然边界条件多元多项式样条插值 被引量:2

MULTIVARIATE POLYNOMIAL SPLINE INTERPOLATION WITH NATURAL BOUNDARY CONDITION FOR SCATTERED DATA OF nD
原文传递
导出
摘要 考虑n维散乱数据Hermit-Birkhoff型插值问题,在使给定的目标泛极小的条件下,构造了一种带自然边界条件的多元多项式样条函数插值方法.重点研究了插值问题解的特征,存在唯一性和构造方法,并讨论了收敛性及误差,最后给出了一些数值算例对方法进行验证. Thinking the interpolation problem of Hermit-Birkhoff type for scattered data of n Dimension, under the condition of minimizing the given functional, a new multivariate polynomial spline interpolation with natural conditions have been constructed. The characterization, existence, uniqueness and construction of the solution of the interpolation problem are studied mainly. Convergence and error estimation are still discussed. Some numerical examples have been presented at last to illustrate the method.
作者 徐应祥
出处 《计算数学》 CSCD 北大核心 2014年第4期407-426,共20页 Mathematica Numerica Sinica
基金 国家自然科学基金项目(11001060)
关键词 散乱数据 自然边界条件 多元多项式 自然样条 插值 scattered data interpolation tri-cubic polynomial natural spline interpo lation
  • 相关文献

参考文献31

  • 1Webb AR著,王萍等译.统计模式识别(第二版)[M].北京:电子工业出版社,2004:85-89.
  • 2ChenTF,ShenJ.图像处理与分析:变分,PDE,小波及随机方法(影印版)[M].北京:科学出版社2009.
  • 3de Boor C. Bicubic spline interpolation[J], J. Math. Phys., 1962, 41: 212-218.
  • 4Schumaker L L. Fitting surfaces to scattered data, 203-268, in Approximation Theory II[M]. Lorentz G G, Chui CK, Schumaker L L. eds., New York: Academic Press, 1976.
  • 5Frank R. Scattered data interpolation: tests of some methods[J]. Math. Comput., 1982, 38: 181-200.
  • 6Micchelli C A. Interpolation of scatteted data: distance matrices and conditionally positive definite functions[J]. Constr. Approx., 1986, 2: 11-22.
  • 7王仁宏.多元样条及其应用【M】.北京:科学出版社,1992.
  • 8ChuiCK.著,程正兴译.多元样条理论用其应用[M].西安:西安交通大学出版社,1991.
  • 9Lai M J. Multivarariate Splines for data fitting and approximation, 210-228, in Approximation Theory XII[M]. San Antonio, 2007, Neamtu M., Schumaker L.L., eds., Brentwood: Nashboro Press, 2008.
  • 10Amidror I. Scattered data interpolation methods for electronic imaging systems: a survey[J]. J. Elect. Imag., 2002, 11(2): 157-176.

二级参考文献62

  • 1关履泰.散乱数据的多项式自然样条光顺与广义插值[J].计算数学,1993,15(4):383-401. 被引量:6
  • 2关履泰,覃廉,张健.用参数样条插值挖补方法进行大规模散乱数据曲面造型[J].计算机辅助设计与图形学学报,2006,18(3):372-377. 被引量:13
  • 3李岳生,胡日章.多元散乱数据的样条插值法[J].高等学校计算数学学报,1990,12(3):215-226. 被引量:13
  • 4崔锦泰.多元样条理论及应用[M].程正兴,译.西安:西安交通大学出版社,1991.
  • 5Guan L T, Li Y S. Multivariate polynomial natural spline interpolation to scattered data. Academic Press, New York, 1989.
  • 6Chui C K, Guan L T. Multivariate polynomial natural splines for interpolation of scattered data and other applications. World Scientific Pub,Singapore, 1993.
  • 7Guan Lutai. Bivariate polynomial natural spline interpolation algorithms with local basis for scattered data[J]. Journal of Computational and Applied Mathematics, 2003, 1: 77-101.
  • 8Guan Lutai. Surface design by natural splines over refined grid points[J]. Journal of Computational and Applied Mathematics, 2004, 163(1): 107-115.
  • 9Lai M J, Schumarker L L. Spline Functions over Triangulations[J]. London: Cambridge University Press, 2007.
  • 10Zhou Tianhe, Han Dafu, Lai Mingjun. Energy minimization method for scattered data hermite interpolation[J]. Applied Numerical Mathematics, 2008, 58: 646-659.

共引文献19

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部