摘要
考虑n维散乱数据Hermit-Birkhoff型插值问题,在使给定的目标泛极小的条件下,构造了一种带自然边界条件的多元多项式样条函数插值方法.重点研究了插值问题解的特征,存在唯一性和构造方法,并讨论了收敛性及误差,最后给出了一些数值算例对方法进行验证.
Thinking the interpolation problem of Hermit-Birkhoff type for scattered data of n Dimension, under the condition of minimizing the given functional, a new multivariate polynomial spline interpolation with natural conditions have been constructed. The characterization, existence, uniqueness and construction of the solution of the interpolation problem are studied mainly. Convergence and error estimation are still discussed. Some numerical examples have been presented at last to illustrate the method.
出处
《计算数学》
CSCD
北大核心
2014年第4期407-426,共20页
Mathematica Numerica Sinica
基金
国家自然科学基金项目(11001060)
关键词
散乱数据
自然边界条件
多元多项式
自然样条
插值
scattered data
interpolation
tri-cubic polynomial
natural spline
interpo lation