期刊文献+

换热器网络设备面积与清洗时序同步优化 被引量:4

Simultaneous optimization of areas and cleaning schedule for heat exchanger networks
下载PDF
导出
摘要 表面结垢会严重影响换热器的传热效率,定期清洗是解决该问题的主要方式。针对以往换热器网络清洗时序优化方法中用于决策的整型变量较多而难以求解的问题,提出以换热器清洗的最大允许污垢热阻为优化变量,取代表示换热器是否清洗的二进制变量,将混合整数非线性规划问题转化成非线性规划问题,能够有效地减小问题规模,降低求解难度。优化过程中兼顾换热器网络的设计型与操作型问题,采用遗传/模拟退火算法同步优化换热器的面积与清洗时序。将该方法用于一个实例,所得年度总费用与文献基本一致,验证了该方法的有效性。 Fouling over the heat transfer surface of equipments always causes reduction to the overall heat transfer coefficient. Regular cleanings become an important means of saving energy. In the existing researches about the optimal cleaning schedule in heat exchanger networks, too many binary variables were involved, which raised the difficulties to solve the problem. This paper took the maximum allowable fouling resistance of the heat unit as the optimization variable, instead of the binary variables to represent requirement of cleaning the heat exchangers. The proposed method converted the mixed integer nonlinear programming (MINLP) problem into a nonlinear programming (NLP) problem, effectively reducing the size of the problem and the difficulty to solve the problem. With consideration of both design and operation problems of the heat exchanger network, genetic/simulated annealing algorithm (GA/SA) was adopted to optimize areas and cleaning schedule of the heat exchangers simultaneously. An example was studied to illustrate the effectiveness of the method.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第11期4484-4489,共6页 CIESC Journal
基金 中央高校基本科研业务费专项资金(DUT14RC(3)046) 中国博士后科学基金项目(2014M55109) 辽宁省自然科学基金项目(2014020007)~~
关键词 系统工程 换热网络 优化 结垢 清洗时序 system engineering heat exchanger network optimization fouling cleaning schedule
  • 相关文献

参考文献20

  • 1Rodrignez C, Smith R. Optimization of operating conditions for mitigating fouling in heat exchanger networks [J]. Chemical Engineering Research & Design, 2007, 85(A6): 839-851.
  • 2Shilling R L. Fouling and uncertainty margins in tubular heat xchanger design: an alternative [J]. Heat Transfer Engineering, 2012 33(13): 1094-1104.
  • 3Pan M, Bulatov I, Smit R. Exploiting tube inserts to intensify heat Xansfer for the retrofit of heat exchanger networks considering Fouling mitigation [J]. Industrial & Engineering Chemistry Research, 2013, 52(8): 2925-2943.
  • 4Azad A V, Ghaebi H, Amidpour M. Novel graphical approach as fouling pinch for increasing fouling formation period in heat exchanger network(HEN) state of the art [J]. Energy Conversion and Management, 2011, 52(1): 117-124.
  • 5Smaili F, Angadi D K, Hatch C M. Optimization of scheduling of cleaning in heat exchanger networks subject to fouling: sugar industry case study [J]. Food and Bioproducts Processing, 1999, 77(2): 159-164.
  • 6Georgiadis M C, Papageorgiou L G, Macchietto S. Optimal cleaning policies in heat exchanger networks under rapid fouling [J]. Industrial & Engineering Chemistry Research, 2000, 39(2): 441-454.
  • 7Georgiadis M C, Papageorgiou L Gt Optimal energy and cleaning management in heat exchanger networks under fouling [J]. Chem. Eng. Res. Des., 2000, 78(2): 168-179.
  • 8Smali F, Vassiliadis V S, Wilson D I. Long-term scheduling of cleaning of heat exchanger networks comparison of outer approximation-based solutions with a backtracking threshold accepting algorithra [J]. Chemical Engineering Research & Design, 2002, 80(A6): 561-578.
  • 9Lavaja J H, Bagajewicz M J. On a new MILP model for the planning of heat-exchanger network cleaning [J]. Industrial & Engineering Chemistry Research, 2004, 43(14): 3924-3938.
  • 10Markowski M, Urbaniec K. Optimal cleaning schedule for heat exchangers in a heat exchanger network [J]. Applied Thermal Engineering, 2005, 25(7): 1019-1032.

二级参考文献37

  • 1肖武,董宏光,李欣强,姚平经,罗行,Wilfried Roetzel.Synthesis of Large-scale Multistream Heat Exchanger Networks Based on Stream Pseudo Temperature[J].Chinese Journal of Chemical Engineering,2006,14(5):574-583. 被引量:14
  • 2Ostrovsky G M, Volin Y M, Golovashkin D V. Evaluation of chemical processes flexibility. Comp.& Chem. Eng. , 1996, 20:S617-S622.
  • 3Briones V, Kokossis A C. Hypertargets: a conceptual programming approach for the optimisation of industrial heat exchanger networks ( Ⅰ ):Grassroots design and network complexity. Chem. Eng. Sci., 1999, 54:519-539.
  • 4Papalexandri K P, Pistikopoulos E N. Synthesis and retrofit design of operable heat exchanger networks ( Ⅰ ) : Flexibility and structural controllability aspects. Ind. Eng. Chem. Res., 1994, 33:1718-1737.
  • 5Aguilera N E, Leoni V A, Nasini G L. Combinatorial flexibility problems and their computational complexity. Electronic Notes in Discrete Mathematics : 2008, 30 303 308.
  • 6Ahmed S, Sahinidis N V. Analytical investigations of the process planning problem. Comp. & Chem. Eng. , 2000, 23:1605- 1621.
  • 7Swaney R E, Grossmann I E. An index for operational flexibility in chemical process design ( Ⅰ ): Formulation andtheory. AIChEJ., 1985, 31:621.
  • 8Kotjabasakis E, Linnhoff B. Sensitivity tables for the design of flexible processes ( Ⅰ ) :How much contingency in heat exchanger networks is cost effective. Chem. Eng. Res. & Des., 1986, 64 (3): 197 -211.
  • 9Grossmann I E, Floudas C A. Active constraint strategy for flexibility analysis in chemical processes. Comp.& Chem. Eng., 1987, 11 (6): 675-693.
  • 10Tantimuratha L, Kokossis A C. Flexible energy management and heat exchanger network design. Annals of Operations Research , 2004, 132:277- 300.

共引文献11

同被引文献67

  • 1胡山鹰,陈丙珍,沈静珠.热回收网络结构柔性的改进方法研究[J].化工学报,1993,44(6):700-707. 被引量:6
  • 2徐志明,杨善让,郭淑青,赵贺,齐冰.电站凝汽器污垢费用估算[J].动力工程,2005,25(1):102-106. 被引量:16
  • 3杨立军,杜小泽,杨勇平,刘登瀛.火电站直接空冷凝汽器积灰监测[J].热能动力工程,2007,22(2):172-175. 被引量:16
  • 4樊绍胜.冷凝器污垢的灰色预测[J].电力科学与技术学报,2007,22(2):12-15. 被引量:12
  • 5MARSELLE D F, MORARI M, RUDD D F. Design of resilient processing plants-II., design and control of energy management systems[J]. Chemical Engineering Science, 1982, 37 (2).. 259-270.
  • 6KOTJABASAKIS E, L1NNHOFF B. Sensitivity tables for the design of flexible processes (1)How much contingency in heat exchanger networks is costeffective[J]. Chemical Engineering Research and Design, 1986, 64 (3): 197-211.
  • 7UZTURK D, AKMAN U. Centralized and decentralized control of retrofit heat exchanger network[J]. Computer Chemical Engineering, 1997, 21: 373-378.
  • 8SABOO A K, MORARI M, WOODCOCK D C. Design of resilient processing plants-V, a resilience index for heat exchanger networks[J]. Chemical Engineering Science, 1985,40( 8 ): 1553 - 1565.
  • 9SWANEY R E, GROSSMANN I E. An index for operational flexibility in chemical process design Part I.. Formulation and theory[J].MChEJ. , 1985, 31: 621.
  • 10GROSSMANN I E, CALFA B A, GARCIAHERREROS P. Evolution of concepts and models for quantifying resiliency and flexibility of chemical process[J]. Computers and Chemical Engineering, 2014, 70: 22-34.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部