期刊文献+

基于遗传算法的航班串优化方法研究 被引量:2

Research on optimization method of flight string based on genetic algorithm
下载PDF
导出
摘要 分析研究了航班串编制问题,考虑了飞机载客量与航班平均客流量的关系,构造了航班旅客溢出成本指数因子,建立了改进后的基于最小成本的航班串优化模型,并构造了遗传算法求解模型。利用Matlab遗传算法工具箱进行仿真研究。应用航空公司实际航班数据对上述模型和算法进行验证,所得优化结果良好,证明该航班串优化模型及方法切实可行。 Flight string problem is analyzed, and the connection between flights' average traffic volume and aircraft pas- senger capacity is considered. The factor of airline passenger overflow cost index is structured, and the optimized model of flight string based on minimum cost is proposed. At last GA based on Matlab is used to study the model. The simulation result with flight data shows that the model and algorithm are practical and effective. The opti- mization of flight string is meaningful to the airlines.
出处 《中国民航大学学报》 CAS 2014年第5期45-48,共4页 Journal of Civil Aviation University of China
基金 国家自然科学基金项目(U1233107)
关键词 遗传算法 航班串 生产计划 genetic algorithm flight string production planning
  • 相关文献

参考文献9

  • 1LIU TUNG KUAN,LIU YU TING,CHEN CHIU HUNG,et al. Multi- objective Optimization on Robust Airline Schedule Recover Problem by Using Evolutionary Computation[C]//IEEE, Montreal,October 7-10, 2007 : 2396-2401.
  • 2TORSTEN R, JULIA P, MAROSZEK, et al. Integrated Aircraft Schedu- ling Problem:An Auto-Adapting Algorithm to Find Robust Aircraft Assignments for Large Flight Plans [C]//2012 45'h Hawaii International Conference on System Sciences, Maui Jannary 4-7, 2012 : 1267-1276.
  • 3ZHAN ZHIHUI,ZHANG JUN,LIU OU,et al. An efficient ant colony system based on receding horizon control for the aircraft arrival se- quencing and scheduling problem[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(2):399-412.
  • 4BURKE,EDMUND K,DE CAUSMAECKER,et al. A multi-objective approach for robust airline scheduling [J]. Computers and Operations Research, 2010,37(5 ) : 822-832.
  • 5HAOUARI M,AISSAOUI N,MANSOUR F Z. Network flow based approaches for integrated aircraft fleeting and routing[J]. European Journal of Operational Research, 2009,193 (2):591-599.
  • 6BARD J,YU G,ARGUELLO M. Optimizing aircraft routings in res- ponse to groundings and delays[J]. HE Transactions, 2001 ( 33 ) : 931-947.
  • 7HOLLAND J H. Adaptation in Nature and Artificial Systems[M]. Michi- gan : The University of Michigan Press, 1975.
  • 8LARRANAGA P, LOZANO J A. Estimation of Distribution Algorithms : A New Tool for Evolutionary Computation[M]. Boston : Kluwer Academic Publishers, 2002.
  • 9曹嵩,孙富春,胡来红,刘华平,张学军.基于分布估计算法的离港航班排序优化[J].清华大学学报(自然科学版),2012,52(1):66-71. 被引量:12

二级参考文献14

  • 1姜微微,崔德光,舒学智.空中交通流量管理中的多机场地面等待策略[J].清华大学学报(自然科学版),2006,46(1):137-140. 被引量:9
  • 2陈炜炜,耿睿,崔德光.进近区域到达航班排序和调度的优化[J].清华大学学报(自然科学版),2006,46(1):157-160. 被引量:9
  • 3周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 4Chandran B, Balakrishnan H. A dynamic programming algorithm for robust runway scheduling [C]// Proc 2007 American Control Conf. New York, 2007:1161-1166.
  • 5Holland J H. Adaptation in Nature and Artificial Systems [M]. Michigan: The University of Michigan Press, 1975.
  • 6Beasley J E, Krishnamoorthy M, Sharaiha Y M, et al. Displacement problem and dynamically scheduling aircraft landings [J]. J Operational Research Society, 2004, 55 : 54 - 64.
  • 7HU Xiaobing, Paolo E D. An efficient genetic algorithm with uniform crossover for air traffic control [J]. Computers Operations Research, 2009, 36(1): 245 -259.
  • 8HU Xiaobing, Paolo E D. Binary-representation based genetic algorithm for aircraft arrival sequencing and scheduling [J]. IEEE Trans on Intelligent Transportation Systems, 2008, 9(2) : 301 - 310.
  • 9TANG Ke, WANG Zai, CAO Xianbin, et al. A multi-objective evolutionary approach to aircraft landing scheduling problems [C]// 2008 IEEE Congress on Evolutionary Computation. Hong Kong: IEEE Press, 2008:3650 - 3656.
  • 10Chen C H, Liu T K, Chou J H, et al. A hybrid multiobjective genetic algorithm on optimizing aircraft schedule recovery problems under short-time response [C]// 2008 IEEE International Conference on Systems, Man and Cybernetics. Singapore: IEEE Press, 2008: 915- 920.

共引文献11

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部