摘要
提出了一种基于偏最小二乘的多跳定位算法(ML-PLS)。算法借助偏最小二乘对已知节点间的跳数与真实距离的建模,通过跳数、距离两者间的最大协方差共同推动节点位置的估计。ML-PLS算法对复杂部署环境具有较强的适应性,克服了传统算法只适用于各向同性网络的不足。仿真结果表明,ML-PLS算法定位精确度高且性能较稳定,并能适应不同网络环境。
An improved multihop localization algorithm (ML-PLS ) based on partial least squares is proposed.This algorithm uses the partial least squares to build the localization model of hop-count and the real distances between beacons,and employs the maximun covariance of hop-count matrix and distance matrix to jointly promote the estimation of node location.ML-PLS has strong adaptability for complicated deployment environment,and overcomes the short-age of traditional multihop algorithm which is only suitable for isotropic networks.Simulation results show that ML-PLS algorithm has high estimate precision and stable performance,and can adapt to different network environments.
出处
《金陵科技学院学报》
2014年第3期19-25,共7页
Journal of Jinling Institute of Technology
基金
金陵科技学院博士启动基金(jit-b-201411)
关键词
多跳定位
无线传感器网络
偏最小二乘
multihop localization
wireless sensor network
partial least squares