期刊文献+

基于用户主题偏好的智能检索算法及实现 被引量:5

Algorithm and Realization of Intelligent Retrieval Based on the User Topic Preference
原文传递
导出
摘要 本文分析了用户对文献的查阅日志及用户间的关联关系,结合电力行业主题范畴表,获取用户的主题偏好。综合考虑检索相关度、用户主题偏好、文献来源权威性分析、引用关系分析等,建立新的排序模型,使结果排序更加准确,从而将与用户需求最相关的文献排到前面,提高检索功能的用户体验。基于lucene 4.3实现智能检索系统,并提供相关主题词提示、主题查询扩展、相关反馈等辅助功能。评测结果表明,该系统在检索满意度和检索效率等方面有显著提升。 The paper analyzes the correlation of documents logs and users, combines with the power industry subject category list and acquires the user's topic preference. Considering the retrieval relevance, userpreferences, subject analysis, authoritative literature sources and reference relationship analysis, we establish a new scheduling model to make the results more accurate, which will make the most relevant articlesof users' demands be on top to improve the user experience of retrieval function. It realizes the intelligentretrieval system based on lucene 4.3 and provides the auxiliary function of related subjects themes, queryexpansion and relevant feedback. The evaluation results show that the system has significant improvement in retrieval satisfaction and retrieval efficiency etc.
作者 周育忠 王平
出处 《情报科学》 CSSCI 北大核心 2014年第11期7-12,18,共7页 Information Science
基金 国家自然科学基金项目(71303179 71073120)
关键词 电力主题范畴 用户主题偏好 综合排序 智能检索 LUCENE 4.3 power subject category user topic preference comprehensive ranking intelligent retrieval Lucene 4.3
  • 相关文献

参考文献10

  • 1龚婷,周育忠,韦嵘晖,王庆红.南方电网技术情报中心系统的研发与应用[J].南方电网技术,2012,6(1):73-77. 被引量:6
  • 2陈锦攀等.广东电网公司竞争情报体系建设初探[C].“2011年度广东省科学技术情报学会综合研讨会暨学会常务理专题文事会、情报(信息)所所长年度工作会,2011.
  • 3Fragoudis D. User Modeling in Information Discovery[C]//Proceedings of Advanced Course on Artificial Intelligence (ACA199), Greece, 1999.
  • 4Chan Philip K. A Non-invasive Learning Approach to Building Web User Profiles[C]//Proceedings of KDD-99 Workshop on Web Usage Analysis and User Profiling. New York:ACM Press, 1999: 7-12.
  • 5Deerwester S, Dumai S T, Furnas G W, et al. Indexing by Latent Semantic Analysis[J]. Journal of ACM Trans- actions on Information Systems, 2000,18(1):79-112..
  • 6Qiu Y, Frei H. Concept Based Query Expansion[C]// Proceedings of the 16th Annual International ACM SI- GIR Conference on Research and Development in In-formation Retrieval. New York: ACM Press, 1993. 160-169.
  • 7Buckley C, Salton G, Allan J, Singhal A. Automatic Query Expansion Using SMART[R]. Technical Report, TREC-3, 1995: 69-80.
  • 8Ricardo B-Y, Berthier R-N. Modern Information Re- trieval[M]. England: Pearson Education Limited, 1999:89.
  • 9He D Q. A Study of Self-Organizing Map in Interac- tive Relevance Feedback[C]//Proceedings of the 3rd International Conference on Information Technology. New Generations, Las Vegas, IEEE. 2006:394-401.
  • 10郑阿花.电力企业竞争情报系统建设探讨[J].湖南电力,2010,30(5):17-20. 被引量:9

二级参考文献20

共引文献11

同被引文献35

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部