期刊文献+

一种基于输出情景化的多维信息推荐新方法研究 被引量:4

A New Method of Multi-dimensional Information Recommendation Based on Contextual Post-filtering
原文传递
导出
摘要 多维信息推荐是目前信息推荐领域中的一项新技术,能动态获取用户在不同情景下的兴趣变化,向用户提供更加个性化、智能化的推荐结果。本文介绍了多维信息推荐的相关知识,提出了输出情景化这一新的概念,构建了基于输出情景化的多维信息推荐系统模型,研制出基于输出情景化的多维信息推荐算法,并通过实验研究方法验证了所提出的多维信息推荐算法的高效性与优越性。 Multi-dimensional information recommendation(MDIR) is a new technology in the field of information recommendation. MDIR can dynamically catch the users' interest changes in different contextsand provide more individualized and intellectualized results. This paper firstly introduces the related content of MDIR. Secondly the paper brings forth the new concept: contextual post-filtering. Thirdly, the paper builds up a new multi-dimensional information recommendation model based on contextual post-filtering and designs a new multi-dimensional recommendation algorithm. Finally, the paper adopts an experiment to test and verify the high efficiency of the new algorithm.
出处 《情报科学》 CSSCI 北大核心 2014年第11期126-132,共7页 Information Science
基金 国家社科基金资助项目(青年项目)(11CTQ020) 广东省自然科学基金项目(博士启动)(S2012040007883) 国家社科基金项目(09CTQ020) 广东省普通高校人文社会科学一般项目(11WYXM023)
关键词 情景 输出情景化 多维信息推荐 context contextual post-filtering multi-dimensional information recommendation
  • 相关文献

参考文献9

  • 1Adomavicius G, Tuzhilin A. Toward the next genera- tion of recommendation systems: A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering. the IEEE Computer Society, 2005,17(6):734 - 749.
  • 2Dey AK. Understanding and using context[J]. Personal and Ubiquitous Computing Journal,20C1, 5(1):4-7.
  • 3Adomavicius G, Tuzhilin A. Context-Aware Recom- mender Systems[M]. Cambridge: Recommender Sys- tems Handbook, 2011: 217-253.
  • 4Panniello U, Tuzhilin A, Gorgoglione M.Experimental comparison of pre- vs. post-filtering approaches in context-aware recommender systems[C]//Association for Computing Machinery, America. Proceedings of the third ACM conference on Recommender systems, NewYork ,2009:43-51.
  • 5杨君,吴菊华,艾丹祥.一种基于情景相似度的多维信息推荐新方法研究[J].情报学报,2013,32(3):262-269. 被引量:15
  • 6Annie Chen.Context-Aware Collaborative Filtering System: Predicting the User's Preference in the Ubiq- uitous Computing Environment[J]. ACM, 2008,(7): 76-80.
  • 7Bai Yuebin, Ji Haixing, Han Qingmian, et al. Towards a service-oriented Middleware Enabling Context Awareness for Smart Environment[J]. International Journal of Ad Hoc and Ubiquitous Computing,2008,4 (1):102-110.
  • 8Adomavicius G, Tuzhilin A, Zheng Rong. REQUEST: A Query Language for Customizing Recommendations [J]. Information Systems Research,2011,22(1):65-72.
  • 9张静.基于情境感知的自适应个性化知识服务研究[J].情报科学,2011,29(11):1658-1661. 被引量:8

二级参考文献24

  • 1潘旭伟,顾新建,程耀东,李建明.集成情境的知识管理模型[J].计算机集成制造系统,2006,12(2):225-230. 被引量:37
  • 2祝锡永,潘旭伟,王正成.基于情境的知识共享与重用方法研究[J].情报学报,2007,26(2):179-184. 被引量:22
  • 3潘旭伟,顾新建,王正成,王世雄.集成情境的知识管理方法和关键技术研究[J].计算机集成制造系统,2007,13(5):971-977. 被引量:29
  • 4张树良,冷伏海.Web环境下个性化信息的获取和个性化服务的实现[J].中国图书馆学报,2007,33(4):77-81. 被引量:48
  • 5Yang S, Shao N. Enhancing pervasive Web accessibility with rule?based adaptation strategy [J]. Expert Systems with Appli- cations, 2007,(32): 1154-1167.
  • 6Mylonas P H, Vallet D, et al Personalized - information re- trieval based on context and ontological knowledge [J]. The Knowledge Engineering Review, 2008, 23 (1): 73-100.
  • 7W3C. OWL Web Ontology Language Guide Recommendation [EB/OL].http://www.w3.org/TR/2004/2004/REC-owl- guide- 20040210/,2010-12-10.
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommendation systems: A survey of the state-of-theart and possible extensions [J]. IEEE Transactions on Knowledge and Data Engineering. the IEEE Computer Soeiety, 2005,17 (6) :734 - 749.
  • 9Goldberg D ,Nichols D ,Oki B M. Using collaborative filtering to weave an information tapestry [J]. Communications of the ACM, 1992, 35(12): 61-70.
  • 10Adomavicius G,Tuzhilin A. Incorporating contextual information in recommendation systems using a multidimensional approach [ J ]. ACM Transactions on Information Systems, 2005(1) :103-145.

共引文献21

同被引文献31

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部