期刊文献+

局域耦合效应在GaInP太阳电池中的应用

Application of the Localized Coupling Effect in the GaInP Solar Cell
下载PDF
导出
摘要 近年来,局域耦合效应在光电转换器件中的应用受到广泛关注,在发光二极管以及硅基太阳电池中的基础与应用研究成为本领域的研究热点。然而局域耦合效应在宽禁带材料体系太阳电池中的应用仍未见系统报道。研究中利用溅射与热退火的手段在GaInP太阳电池表面成功制备了粒径与占空比可控的Au/半导体纳米异质结构,并对其退火前后的形貌进行了系统分析,后续对纳米异质结构的光学吸收现象及局域耦合效应的内在机制进行了探讨。最终,通过反射光谱的表征,在Au溅射时间为20 s和30 s样品中分别得到了2.2%和5.5%的光吸收增强。该研究提出的局域耦合效应在GaInP太阳电池中的应用,为改善GaInP太阳电池的表面吸收效率提供了一种新的思路。 In recent years, the applications of localized coupling effect in photoelectric conversion devices have attracted widely attention. Although related basic and applied research in light emitting diodes and silicon based solar cells become a hot research topic, localized coupling effects in wide band- gap solar cells are not reported systematically. The controllable Au/semiconductor nano heterostructures with different particle sizes and duty ratios were successfully fabricated on the GalnP solar cell surface using sputtering and annealing approaches. Morphologies and absorption properties before and after the annealing process were analyzed by the scanning electron microscope (SEM) and UV-VIS spectrometer respectively. Then the optical absorption mechanism of different samples was discussed. Finally, 2.2% and 5.5% enhancement in light absorption had been obtained in the samples with the sputtering time of 20 s and 30 s via reflectance spectrum measurement. It provides a new direction to improve the absorp- tion efficiency of GalnP solar cells.
出处 《半导体技术》 CAS CSCD 北大核心 2014年第11期812-816,共5页 Semiconductor Technology
基金 国家安全重大基础研究资助项目(6131550102) 山东省博士后创新项目专项基金资助项目(201303002) 山东省优秀中青年科学家科研奖励基金资助项目(BS2013DX007)
关键词 局域耦合 GaInP太阳电池 等离激元 光吸收 光电转换效率 localized coupling GalnP solar cell plasmonics light absorption photoelectric convert efficiency
  • 相关文献

参考文献10

  • 1EBBESEN T W, LEZEC H J, GHAEMI H, et al. Ex- traordinary optical transmission through sub-wavelength hole arrays [J].Nature, 1998, 391 (12): 667-669.
  • 2SWEATLOCK L A, MAIER S A, ATWATER H A, et al. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles [ J]. Physics Review: B, 2005, 71 (23): 235408-1-235408-7.
  • 3CATCHPOLE K R, POLMAN A. Plasmonic solar cell [J]. Optics Express, 2008, 16 (26): 21793-21800.
  • 4OKAMOTO K, NIKI I, SHVARTSER A, et al. Sur- face-plasmon-enhanced light emitters based on InGaN quantum wells [J].Nature Materials, 2004, 3 (9): 601-605.
  • 5GONTIJO l, BORODISKY M, YABLONVITCH E, et al. Coupling of InGaN quantum-well photolumines- cence to silver surface plasmons [J]. Physics Review: B, 1999, 60 (16): 11.
  • 6DELBEKE D, BIENSTMAN P, BOCKSTAELE R, et al. Rigorous electromagnetic analysis of dipole emis- sion in periodically corrugated layers: the grating-assisted resonant-cavity light-emitting diode [ J]. Journal Optical Society America: A, 2002, 19 (5): 871-880.
  • 7PILLAI S, CATCHPOLE K R, TRUPKE T, et al. Surface plasmon enhanced silicon solar cells [J]. Journal of Applied Physics, 2007, 101 (9): 093105-1-093105-8.
  • 8DERKACS D, LIM S H, MATHEU P, et al. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparti- cles [ J]. Applied Physics Letters, 2006, 89 (9): 093103-1-093103-3.
  • 9AKIMOV Y A, OSTRIKOV K, LI E P. Surface plasmon enhancement of optical absorption in thin-film silicon solar cells [J]. Plasmonics, 2009, 4 (2): 107-113.
  • 10TEMPLE TL, MAHANAMA G D K, REEHAL H S, et al. Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells [J]. Solar Energy Materials and Solar Cells, 2009, 93 (11): 1978-1985.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部