摘要
针对复杂多变的战场环境中多无人机路径再规划,给出了一种人机合作策略下的改进稀疏A*算法。提出在局部路径再规划动态窗口内人工干预给出必经子目标点,再通过SAS算法自动规划出路径的人机交互策略;采用路径再规划约束条件对生成的路径节点进行了合并处理。仿真实验表明,上述改进的SAS算法,有效约束了SAS算法可行解空间,降低了算法的计算量,并且减少了生成路径点的个数,缩短了数据传输时间,获得了多无人机规避突发威胁/危险、避碰的令人主观满意的再规划路径。
An improved path replanning sparse A*search algorithm based on the strategy of human-automation col-laboration is proposed for multiple UAVs under complex and dynamic war environment . The proposed strategy is that the sub-goal waypoints can be inserted manually in the dynamic path replanning window through human-auto-mation collaboration with the A*algorithm executing automatically. The replanning waypoints are processed further and merged. Simulation experimental results and their analysis show preliminarily that the above method can obtain an subjectively satisfactory result rapidly, satisfying the requirements of popup-threat avoidance, collision avoidance among multiple paths, reducing search space and computation time, and making the number of replanned waypoints smaller and transmission time shorter.
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2014年第5期688-692,共5页
Journal of Northwestern Polytechnical University
关键词
稀疏A*算法
人机合作
路径再规划
多无人机
突发威胁
improved SAS (Sparse A* Search) algorithm, multiple unmanned aerial vehicles(UAVs), humanautomation collaboration, path planning, popup threats