期刊文献+

基于人机合作策略下SAS算法的多无人机路径再规划 被引量:8

Path Replanning Approach for Multiple UAVs Based on SAS (Sparse A* Search) Algorithm under Human Automation Collaboration
下载PDF
导出
摘要 针对复杂多变的战场环境中多无人机路径再规划,给出了一种人机合作策略下的改进稀疏A*算法。提出在局部路径再规划动态窗口内人工干预给出必经子目标点,再通过SAS算法自动规划出路径的人机交互策略;采用路径再规划约束条件对生成的路径节点进行了合并处理。仿真实验表明,上述改进的SAS算法,有效约束了SAS算法可行解空间,降低了算法的计算量,并且减少了生成路径点的个数,缩短了数据传输时间,获得了多无人机规避突发威胁/危险、避碰的令人主观满意的再规划路径。 An improved path replanning sparse A*search algorithm based on the strategy of human-automation col-laboration is proposed for multiple UAVs under complex and dynamic war environment . The proposed strategy is that the sub-goal waypoints can be inserted manually in the dynamic path replanning window through human-auto-mation collaboration with the A*algorithm executing automatically. The replanning waypoints are processed further and merged. Simulation experimental results and their analysis show preliminarily that the above method can obtain an subjectively satisfactory result rapidly, satisfying the requirements of popup-threat avoidance, collision avoidance among multiple paths, reducing search space and computation time, and making the number of replanned waypoints smaller and transmission time shorter.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第5期688-692,共5页 Journal of Northwestern Polytechnical University
关键词 稀疏A*算法 人机合作 路径再规划 多无人机 突发威胁 improved SAS (Sparse A* Search) algorithm, multiple unmanned aerial vehicles(UAVs), humanautomation collaboration, path planning, popup threats
  • 相关文献

参考文献6

  • 1Dong Zhouning, Chen Zongji, Zhou Rui, et al. A Hybrid Approach of Virtual Force and A" Search Algorithm for UAV Path Re- Planning[ C ]//Proc of IEEE Conference on Industurial Electronics and Applications, 2011 : 1140-1145.
  • 2Nathan D R, Manu S, David G W. A Hybrid A/Automation Approach to On-Line Path Planning with Obstacle Avoidance[ C] ///Proc of AIAA lsh Intelligent Systems Technical Conference, Chicago, 2004:1-17.
  • 3郗永军,周德云.多无人机协同攻击路径规划研究[J].计算机仿真,2010,27(3):69-72. 被引量:12
  • 4马培军,毛云云,张洪涛,苏小红.基于3DSAS的多约束多航迹协同规划与搜索方法[J].系统工程与电子技术,2011,33(7):1527-1533. 被引量:8
  • 5Hwang J H, Arkin R, Kwon D S. Mobile Robots at Your Fingertip: Bezier Curve On-Line Trajectory Generation for Supervisory Control[ J]. Proceedings of the IEEE/ RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, USA, 2003.
  • 6Carrigan G. The Design of an Intelligent Decision Support Tool for Submarine Commander[ D]. Massachusetts Institute of Tech- nology Engineering Systems Division, 2009.

二级参考文献26

  • 1高晓光,符小卫,宋绍梅.多UCAV航迹规划研究[J].系统工程理论与实践,2004,24(5):140-143. 被引量:25
  • 2马云红,周德云.飞行器低空突防威胁建模与航迹优化算法[J].火力与指挥控制,2004,29(5):31-33. 被引量:22
  • 3田亮,吴金荣,孙富春.基于遗传算法的飞行器多航迹规划[J].计算机工程与应用,2006,42(31):216-218. 被引量:3
  • 4Timothy W McLain, Randal W Beard. Trajectory Planning for Co -ordinated Rendezvous of Unmanned Air Vehicles [ R ]. AIAA - 2000 - 4-369, 2000.
  • 5Tulum K, Durak U, Ider S K. Situation aware UAV mission route planning[C]// Proc, of the IEEE Aerospace Conference, 2009:1 - 12.
  • 6Canny J F. The complexity of robot motion planning [M]. Cambridge: MIT Press, 1988.
  • 7Szczerba R J, Galkowski P, Glickstein I S, et al. Robust algorithm for real-time route planning[J]. IEEE Trans. on Aero space and Electronic Systems, 2000,36 (3) : 869 - 878.
  • 8Gudaitis M S, Lamont G B, Terzuoli A J. Multicriteria vehicle route-planning using parallel A* search [C]// Proc. of the ACM Symposium on Applied Computing, 1995 : 171 - 176.
  • 9Meng Z J, Huang P F, Yan J. Trajectory planning for hypersonic vehicle using improved sparse A* Algorithm[C]// Proc. of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2008 : 1152 - 1157.
  • 10Timothy W M, Phillip R C, Meir P. A decomposition strategy for optimal coordination of unmanned air vehicles[C]// Proc. of the American Control Conference, 2000 : 369 - 373.

共引文献18

同被引文献65

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部