期刊文献+

基于空间系绳系统辅助返回的再入条件计算分析 被引量:2

Calculating Reentry Conditions for Space Tether-Assisted Return System
下载PDF
导出
摘要 主要针对空间系绳系统辅助返回的大气层再入条件进行了计算及相关影响因素的分析。首先描述了系绳辅助返回过程,再次建立了系统在轨道坐标系下的动力学模型、舱体回摆模型,给出了再入条件的计算过程。分析了不同轨道高度下绳长、最大偏离角、系绳质量、切断角对再入条件的影响以及满足再入条件下,不同轨道高度下的绳长范围。基于以上分析,给出了再入速度与轨道高度和绳长、最大偏离角与绳长、再入角与最大偏离角和绳长的解析表达式,给出了再入条件与绳长的二阶关系表达式,并进行了验证。该研究为今后利用系绳系统来实现辅助返回的相关参数的选择提供了一定的参考,为空间系绳系统辅助返回技术的研究提供了重要的理论依据。 The atmospheric reentry conditions for a space tether-assisted return system are calculated, and its influ-ence factors are analyzed based on the space tether-assisted deorbit system. The space tether-assisted return process is described, its dynamic model and the backswing model of the capsule in the orbit coordinate system are estab-lished, and the results on the calculation of reentry conditions are given. The influence on reentry conditions by tether length, maximum deviation, tether mass, cut angle and the range of tether length that meet the reentry condi-tions under different altitudes are analyzed. The analytical expression among reentry velocity, altitude and tether length, the expression between maximum deviation angle and tether length and the expression among reentry angle, maximum deviation angle and tether length are obtained. Finally the second order expression between reentry condi-tion and tether length is obtained and verified. This study has reference value for choosing the parameters of a future tether-assisted return system and calculating its return conditions.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第5期730-736,共7页 Journal of Northwestern Polytechnical University
基金 2011年度国家国际科技合作专项项目 陕西省科学技术研究发展计划项目(2013KW09-02)资助
关键词 空间系绳系统 辅助返回 再入条件 angular velocity base stations calculations computer simulation least squares approximations mathematical models orbits reentry spacecraft tether lines velocity reentry condition space tether system tether-assisted reentry
  • 相关文献

参考文献9

  • 1Holger GlaBel, Zimmermann Frank, Bruckner Steffen, Schottle Ulrich M, Rudolph Stephan. Adaptive Neural Control of The Deployment Procedure for Tether-Assisted Re-Entry[ J]. Aerospace Science and Technology, 2004, 8( 1): 73-81.
  • 2Van der Hyde E J, Heide Kruijff M. Star Track A Swinging Tether Assisted Re-Entry for The International Space Station [ M ]. European Space Agency, 1996.
  • 3Rupp C. A Tether Tension Control Law for Tethered Satellite Deployed along Local Vertical[ R]. Marshall Space Flight Center, NASA TM X-64963, 1975.
  • 4冯杰,鲜勇,雷刚.绳系卫星安全捕获策略下的释放最优控制[J].宇航学报,2011,32(9):1939-1944. 被引量:6
  • 5Bevilacqua Franco, Burigo Mario Lorenzo. Tether Deorbit System: A Promising Alternative[ C ]//3rd Tethers in Soace/Toward Flight International Conference, 1989.
  • 6曹喜滨,郑鹏飞.基于Galerkin法的柔性绳系辅助返回系统的展开动力学建模与分析[J].航空学报,2011,32(3):421-428. 被引量:5
  • 7Zimmermann Frank, Schottle Ulrich M, Messerschmid Ernst. Optimization of The Tether-Assisted Return Mission of A Guided Re-Entry Capsule[ J]. Aerospace Science and Technology, 2005, 9(8) : 713-721.
  • 8Iharulidze U G. Space Vehicles Ballistics[ M]. Nauka, Moscow, 1982.
  • 9扎伯罗特诺夫·尤里,著.空间系绳系统运动动力学与控制导论[M].王长青,等.译.北京:科学出版社,2013.

二级参考文献30

  • 1彭建华,刘延柱.绳系卫星的混沌运动[J].上海交通大学学报,1996,30(11):32-35. 被引量:12
  • 2Zimmermann F, Sch6ttle U M, Messerschmid E. Optimal deployment and return trajectories for a tether-assisted reentry mission [C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. 1999.
  • 3Burkhardt J, Zimmermann F, Sch6ttle U M. Operational use of guided reentry capsules system design solutions and mission safety considerations[J]. Aerospace Science and Technology, 2004, 8(7): 635-644.
  • 4Gilbert C, Bremen A G, Mazoue F. New space application opportunities based on the inflatahle reentry & descent technology IRDT [C]//AIAA International Air and Space Symposium and Exposition:The Next 100 Years. 2003.
  • 5Jin D P, Hu H Y. Optimal control of a tethered subsatel jire of three degrees of freedom[J]. Nonlinear Dynamics, 2006, 46(1-2): 161-178.
  • 6Kumar K, Pradeep S. Strategies for three dimensional de ployment of tethered satellites [J]. Mechanics Research Communications, 1998, 25(5): 543-550.
  • 7Licata R. Tethered system deployment controls by feed back fuzzy logic[J]. Acta Astronautica, 1997, 40 (9): 619-634.
  • 8Vadali S R, Kimf E S. Feedback control of tethered satel- lites using Lyapunov stability theory[J]. Journal of Guid ance, Control, and Dynamics, 1991, 14(4): 729-735.
  • 9Glfil]el H, Zimmermann F, Brackner S, et al. Adaptive neural control of the deployment procedure for tetheras sisted re entry[J]. Aerospace Science and Technology, 2004, 8(1): 73-81.
  • 10Pasca M, Lorenzini E C. Two analytical models for the analysis of a tethered satellite system in atmosphere[J]. Meccanica, 1997(32): 263-277.

共引文献10

同被引文献22

  • 1刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418. 被引量:564
  • 2扎伯罗特诺夫·尤里,著.空间系绳系统运动动力学与控制导论[M].王长青,等.译.北京:科学出版社,2013.
  • 3Troger H, Alpatov A P, Beletsky V V, et al. Dynamics of Tethered Space Systems[ M ]. CRC Press, 2010.
  • 4Misra A K, Modi V J. A Survey on the Dynamics and Control of Tethered Satellite Systems[ C] //Tethers in Space, 1986.
  • 5Johnson L. The Tether Solution [ Space Propulsion, Electrodynamic Tether] [ J ]. Spectrum, IEEE, 2000, 37(7) : 38-43.
  • 6Oberg J. Saving Mir with a Rope Trick[J]. Spectrum, IEEE, 2000, 37(7) : 32-37.
  • 7Cartmell M P, McKenzie D J. A Review of Space Tether Research[J]. Progress in Aerospace Sciences, 2008, 44(1) : 1-21.
  • 8Kumar K D. Review on Dynamics and Control of Noneleetrodynamic Tethered Satellite Systems [ J ]. Journal of Spacecraft and Rockets, 2006, 43(4): 705-720.
  • 9Tyc G, Han R P S. Attitude Dynamics Investigation of the OEDIPUS-A Tethered Rocket Payload [ J ]. Journal of Spacecraft and Rockets, 1995, 32(1) : 133-141.
  • 10Lemke L G, Powell J D, He X. Attitude Control of Tethered Spacecraft[ C ]//NASA, AIAA, and PSN, International Conference on Tethers in Space, Arlington, VA. 1986.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部