期刊文献+

Sn/Pt纳米立方体对乙醇电催化氧化的原位FTIR光谱研究

Electrochemical and Spectroscopic Studies of Ethanol Oxidation on Nano-Cubic Pt Modified by Tin Adatoms
下载PDF
导出
摘要 采用循环伏安电沉积方法制备了Sn修饰的铂纳米立方体,并研究其对乙醇的电催化氧化.结合传统的电化学方法和原位电化学红外光谱技术研究了Sn的作用机理.循环伏安研究表明,Sn修饰后使其对乙醇氧化的起始电位显著负移,Sn覆盖度~0.90时乙醇氧化的起始电位为-0.1 V.原位红外光谱结果表明,修饰Sn后极大地促进了乙酸的生成,更利于乙醇的直接氧化途径,但对乙醇的C—C键断裂促进作用不大. The nano-cubic Pt modified by tin (Sn) was synthesized and used to investigate the role of this adatom played in the ethanol oxidation. The onset potential of ethanol oxidation was significantly shifted negatively which can be forward about 300 mV when the coverage of Sn (θSn) was 0.9. The electrtocbemical in situ FTIR result demonstrated that the amount of CO2 increased first, and then decreased with θSn increased, and reached the maximun when θSn was 0.38. Furthermore, the formation of acetic acid could be observed at very low potential (-0.05 V) after modifying Sn adatom, and the amount of acetic acid increased with θSn increased. That is, Sn deposited on Pt surfaces has a double effect on the ethanol oxidation. First, it facilitates the oxidation of CO coming from the cleavage of the C--C bond in ethanol by a bifunctiontal mechanism. Second, the Pt-Sn ensemble catalyzes the oxidation of ethanol to acetic acid. This means that the main product in the oxidation of ethanol for the Pt-Sn system should be acetic acid unless the Pt surface structure has some special sites able to break the C--C bond.
出处 《电化学》 CAS CSCD 北大核心 2014年第5期395-400,共6页 Journal of Electrochemistry
基金 国家自然科学基金项目(No.21273180 No.21021002和No.21361140374)资助
关键词 Sn修饰 铂立方体 乙醇 电催化 原位红外光谱 tin modified nano-cubic Pt ethanol electrocatalysis in situ FTIR
  • 相关文献

参考文献23

  • 1Annett Rabis P R, Thomas J, Schmidt A. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges[J]. ACS Catalysis, 2012, 2(5): 864-890.
  • 2Hu C G, Cheng H H, Zhao Y, et al. Newly-designed complex ternary Pt/PdCu nanoboxes anchored on three-dimensional graphene framework for highly efficient ethanol oxidation[J]. Advanced Materials, 2012, 24(40): 5493-5498.
  • 3Brouzgou A, Tsiakaras P. PEMFCs and AEMFCs directly fed with ethanol: A current status comparative review[J]. Journal of Applied Electrochemistry, 2013, 43(2): 119-136.
  • 4Santasalo Aarnio A, Tuomi S, Jalkanen K, et al. The correlation of electrochemical and fuel cell results for alcohol oxidation in acidic and alkaline media[J]. Electrochimica Acta, 2013, 87(20): 730-738.
  • 5Song S Q, Tsiakaras P. Recent progress in direct ethanol proton exchange membrane fuel cells[J]. Applied Catalysis B: Environmental, 2006, 63(3/4): 187-193.
  • 6Cui G F, Song S Q, Shen P K, et al. First-principles considerations on catalytic activity of Pd toward ethanol oxidation[J]. Journal of Physical Chemistry C, 2009, 113(35): 15639-1564.
  • 7Wu H X, Li H J, Zhai Y J, et al. Facile synthesis of free-standing Pd-based nanomembranes with enhanced catalytic performance for methanol/ethanol oxidation[J]. Advanced Materials, 2012, 24(12): 1594-1597.
  • 8Du W X, Deskins N A, Su D, et al. Iridium-ruthenium alloyed nanoparticles for the ethanol oxidation fuel cell reactions[J]. ACS Catalysis, 2012, 2(6): 1226-1231.
  • 9Wang F W, Liu Z P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: New transition-state searching method for resolving the complex reaction network[J]. Journal of the American Chemical Society, 2008, 130(33): 10996-11004.
  • 10He Q G, Shyam B, Macounova K, et al. Dramatically enhanced cleavage of the C-C bond using an electrocatalytically coupled reaction[J]. Journal of the American Chemical Society, 2012, 134(20): 8655-8661.

二级参考文献2

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部