期刊文献+

氧化铅/石墨烯/活性炭的制备及电化学行为(英文)

Preparation and Electrochemical Behavior of PbO/GN/AC
下载PDF
导出
摘要 将商业活性炭和石墨烯在饱和硝酸铅溶液中超声浸渍,并通过化学沉积结合高温煅烧制备了氧化铅/石墨烯/活性炭(PbO/GN/AC)复合材料.采用XRD、SEM、EDS等手段对复合物进行了物相及微观结构表征.测试结果发现,直径约200 nm的PbO颗粒均匀地分散在活性炭和石墨烯的表面.复合物表现出优异的电化学性能,具有较高的析氢过电位,比电容高达312.6 F·g-1,等效串联内阻仅为1.56Ω.6000次循环之后,复合物电极的电容保持率仍达到92.6%.将5%(bymass)的Pb(PbO)/活性炭材料加入到铅酸电池负极铅膏中制备相应铅炭超级电池循环次数达到18051次,是普通铅酸蓄电池的3.5倍. The lead oxide/graphene/activated carbon (PbO/GN/AC) composite materials were prepared by impregnating com- mercial activated carbon and graphene in saturated lead nitrate solution followed by calcination. The structures and morphologies of the composite were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spec- troscopy (EDS). The results show that PbO crystals (about 200 nm) were dispersed uniformly on the surface of activated carbon and graphene. Electrochemical data indicate that the composite exhibited good electrochemical performances. The PbO/GN/AC com- posite possessed the higher over-potential of hydrogen evolution and the high specific capacitance of 312.6 F. g-a, while the internal resistance was 1.56 12. The composite electrode also displayed excellent cycling stability, retaining over 92.6% of its initial charge after 6000 cycles. The ultra-battery with 5% (by mass) PbO/GN/AC being added to the negative paste had a cycle life approximate- ly 3.5 times longer than conventional lead-acid batteries.
出处 《电化学》 CAS CSCD 北大核心 2014年第5期486-492,共7页 Journal of Electrochemistry
基金 supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2014BAC03B03)
关键词 活性炭 PBO 石墨烯 析氢 超级电容器 activated carbon PbO graphene hydrogen evolution supercapacitor
  • 相关文献

参考文献12

  • 1Czerwinski A, Obrebowski S, Kotowski J, et al. Hybrid lead-acid battery with reticulated vitreous carbon as a carrier- and current-collector of negative plate [J]. Journal of Power Sources, 2010, 195(2): 7530–7534.
  • 2Lam L T, and R Louey. Development of ultra-battery for hybrid-electric vehicle applications [J]. Journal of Power Sources, 2006, 158(2): 1140-1148.
  • 3Lam L T, Louey R, Haigh N P, et al. VRLA ultrabattery for high rate partial state of charge operation [J]. Journal of Power Sources, 2007, 174(1): 16-29.
  • 4Cooper A, Furakawa J, Lam L, et al. The ultrabattery-A new battery design for a new beginning in hybrid electric vehicle energy storage [J]. Journal of Power Sources, 2009, 188(2): 642-649.
  • 5Furukawa J, Takada T, Monma D, et al. Further demonstration of the VRLA-type ultrabattery under medium-HEV duty and development of the flooded-type UltraBattery for micro- HEV applications [J]. Journal of Power Sources, 2010, 195(4): 1241-1245.
  • 6Aravinda L S, Udaya Bhat K. Badekai Ramachandra Bhat, Nano CeO2/activated carbon based composite electrodes for high performance supercapacitor [J]. Materials Letters, 2013, 112(1): 158-161.
  • 7Feng Z H, Xue R S, Shao X H. Highly mesoporous carbonaceous material of activated carbon beads for electric double layer capacitor [J]. Electrochimica Acta, 2010, 55( ): 7334-7340.
  • 8Geim A K. Graphene: Status and Prospects [J].Science, 2009, 324( ): 1530 -1534.
  • 9Katsnelson M I. Graphene: carbon in two dimensions [J]. Materials Today, 2007, 10(1/2): 20 -27.
  • 10Novoselov K S. Nobel Lecture: Graphene: Materials in the Flatland [J]. Reviews of Modern?Physics, 2011, 83( ): 837-849.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部