期刊文献+

假单胞菌催化的碳碳双键不对称还原

Asymmetric reduction of C=C bond catalyzed with Pseudomonas species
原文传递
导出
摘要 烯醇还原酶能够催化活性烯烃的不对称还原,得到具有一个或两个手性中心的烷烃化合物.为了挖掘含有烯醇还原酶的微生物资源,本研究利用柠檬醛与(Z)-乙基-3-硝基-2-苯基丙烯酸酯对土壤中的细菌进行富集筛选与鉴定,得到7株具有碳碳双键还原活力的假单胞菌.利用全细胞生物转化体系,分别研究这7株菌株对8种不同底物的转化活力,结果显示上述菌株表现出不同的底物偏好性、对映选择性以及结构选择性.例如菌株7-B-2能够以99%的转化率和e.e.值将底物(Z)-乙基-3-硝基-2-苯基丙烯酸酯转化为(S)-乙基-3-硝基-2-苯基丙酸酯;菌株9-A-1能够以75%的转化率和99%的e.e.值将底物(Z)-3-苯基-3-氰基-丙烯酸转化为(R)-3-苯基-3-氰基-丙酸.研究结果表明这7个菌株在重要手性中间体的生物合成中具有一定研究与应用价值. Asymmetric reduction of activated alkenes to the corresponding enantiopure alkanes by enoate reductases(ERs) can lead to one or two chiral centers. In the present work, citral and(Z)-ethyl 3-nitro-2-phenylacrylate were used to enrich and screen microbes producing ERs from soil. Seven microbial strains were obtained and identified as Pseudomonas sp., which displayed varied substrate preference and enantio-selectivity toward eight activated alkenes or alkynes. Strain 7-B-2 could transform(Z)-ethyl 3-nitro-2-phenylacrylate to(S)-ethyl 3-nitro-2-phenylpropanoate with a conversion and e.e. value of 99%; strain 9-A-1 could transform(Z)-3-cyano-3-phenylacrylic acid to(R)-3-cyano-3-phenylpropanoic acid with a conversion of 75% and e.e. value of 99%. The results demonstrated that the strains from the genus of Pseudomonas are important to bioreductive synthesis of some important chiral intermediates.
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2014年第5期798-803,共6页 Chinese Journal of Applied and Environmental Biology
基金 国家自然科学基金项目(21072183 21372216)资助~~
关键词 老黄酶 烯醇还原酶 不对称还原 生物催化 假单胞菌 old yellow enzyme enoate reductase asymmetric reduction biocatalysis Pseudomonas sp.
  • 相关文献

参考文献35

  • 1Liu Y,Tang TX,Pei XQ,Zhang C,Wu ZL.Identification of ketone reductase ChKRED20 from the genome of Chryseobacterium sp.CA49 for highly efficient anti-Prelog reduction of 3,5-bis(trifluoromethyl) acetophenone [J].J Mol Catal B:Enzym,2014,102:1-8.
  • 2Clouthier C,Pelletier J.Expanding the organic toolbox:a guide to integrating biocatalysis in synthesis [J].Chem Soc Rev,2012,41:1585-1605.
  • 3Hollmann F,Arendsa IWCE,Holtmannb D.Enzymatic reductions for the chemist [J].Green Chem,2011,13:2285-2314.
  • 4Crocq V,Masson C,Winter J,Richard C,Lemaitre G,Lenay J,Vivat M,Buendia J,Prat D.Synthesis of Trimegestone:the first industrial application of Bakers’ yeast mediated reduction of a ketone [J].Org Process Res Dev,1997,1:2-13.
  • 5Gooding OW,Voladri R,Bautista A,Hopkins T,Huisman G,Jenne S,Ma S,Mundorff EC,Savile MM,Truesdell SJ,Wong J.Development of a practical biocatalytic process for(R)-2-methylpentanol [J].Org Process Res Dev,2009,14:119-126.
  • 6Liu YJ,Pei XQ,Lin H,Gai P,Liu YC,Wu ZL.Asymmetric bioreduction of activated alkenes by a novel isolate of Achromobacter species producing enoate reductase [J].Appl Microbiol Biotechnol,2012,95:635-645.
  • 7Wang HB,Pei XQ,Wu ZL.An enoate reductase Achr-OYE4 from Achromobacter sp.JA81:characterization and application in asymmetric bioreduction of C=C bonds.Appl Microbiol Biotechnol,2014,98:705-715.
  • 8Warburg O,Christian W.On a new oxidation enzyme [J].Naturwissenschaften,1932,20:980-981.
  • 9Warburg O,Christian W.Yellow enzyme and its effects [J].Biochem Zeits,1933,266:377-411.
  • 10Theorell H.Preparation in pure state of the effect group of yellow enzymes [J].Biochem Zeits,1935,275:344-346.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部