期刊文献+

激光激励下微半导体结构的三维温度响应

PHOTOTHERMAL RESPONSE IN SEMICONDUCTING MICROSTRUCTURE PRODUCED BY LASER EXCITATION
原文传递
导出
摘要 论文运用耦合的等离子波和热传导模型研究了在激光激励下的半导体微硅试件的温度响应;采用格林函数方法得到了在热化热源、体复合热源和表面复合热源共同作用下三维微硅试件中载流子浓度和温度的解析解;对均布激光和聚焦激光激励下的微硅试件温度响应进行了计算,得到了温度的空间分布及其随激励频率的变化关系. Recently,the photothermal methods are widely used as a detection way in micro-electromechanical system(MEMS)and nano-electromechanical system(NEMS),especially in the situations where other techniques are not useful.The plasma wave and thermal wave,generated by the absorbed intensitymodulated optical excitation,play a key role in the PT experiments for most semiconducting and microelectronics structures.So,deep study on the photothermal response of a sample under different excitations is very important.In this paper,the green function method was used to solve 3-dimensional coupled plasma wave and heat conduction equations.By this method,the expressions of carrier density and temperature were derived analytically,and the spatial distribution of temperature and its variation with excitation frequency were given graphically for different heat sources.
出处 《固体力学学报》 CAS CSCD 北大核心 2014年第5期458-463,共6页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金(10972169) 中央高校基本科研业务费专项资金资助
关键词 光热 微半导体结构 格林函数 载流子浓度 温度 photothermal semiconducting microstructure Green function carrier-density temperature
  • 相关文献

参考文献3

二级参考文献48

  • 1Rebay M. and Padet J., Laminar boundary-layer flow over a semi-infinite plate impulsively heated or cooled, Eur. Phys. J. : Appl Phys 7, pp. 263-269, (1999).
  • 2Mebarki, G., Rebay, M. and Rahal, S., Numerical Investigations of Transient Conjugated Conduction - convection Problem over a Flat Plate, Proc. Of CONV-09: lnt. Symp. On Convective Heat and Mass Transfer in Sustainable Energy, Hammamet, Paper N° 198, Ed. Begell-House, USA, 2009.
  • 3Mladin E., Lachi M., and Rebay, M., Transient Thermal Coupling in Flows Over a Finite Thickness Plate, International Journal of Transport Phenomena 11, pp. 133-145, (2009).
  • 4Degiovanni A., Identification de la diffusivite thermique par l'utilisation des moments temporels partiels, High Temperatures-High Pressures 17, pp. 683-689, (1985).
  • 5Balageas D., Mesure de la diffusivite thermique par la methode Flash, Techniques de l'ingenieur, R 2 955, (1996).
  • 6Balageas D., Boscher D., Deom A., Fournier J. et Henry R., La thermographie infrarouge: un outil quantitatif a la disposition du thermicien, Rev. Gen. Therm. 322, pp. 501-510, (1988).
  • 7Crowther D. J. and Padet J., Measurement of the local convection coefficient by pulsed photothermal radiometry, Int. J. Heat Mass Trans. 34, pp. 3075-3081 (1991).
  • 8Petit D., Dard J. et Degiovanni A., Determination du coefficient d'echange entre un fluide et une paroi, Rev. Gen. Therm. 238, pp. 719-732, (1981).
  • 9Rebay M., Lachi M., and Padet J., Mesure de coefficients de convection par methode impulsionnelle - Influence de la perturbation de la couche limite, Int. J. Thermal Sciences 41, pp. 1161-1175, (2002).
  • 10Rebay M., Kakac S., Ben Maad R., and Padet J., Experimental evaluation of heat transfer coefficient in electronic air-cooling, Int. J. of Transport Phenomena 11,pp. 185-196,(2009).

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部