期刊文献+

噻吩在γ-Mo_2N(100)表面上加氢脱硫反应的密度泛函理论研究 被引量:7

Density Functional Theory Study of Thiophene Hydrodesulfurization on γ-Mo_2N(100) Surface
下载PDF
导出
摘要 利用密度泛函理论研究了γ-Mo2N(100)表面上的噻吩加氢脱硫(HDS)过程.噻吩在γ-Mo2N(100)表面上不同作用形式的结构优化结果显示,η5-Mo2N吸附构型最稳定,具有最大的吸附能(-0.56 eV),此时噻吩通过S原子与Mo2原子相连平行表面吸附在四重空位(hcp位).H原子和噻吩在hcp位发生稳定共吸附,hcp位是噻吩HDS的活性位点.噻吩在γ-Mo2N(100)表面进行直接脱硫反应,HDS过程分为S原子脱除和C4产物加氢饱和两部分.过渡态搜索确定了HDS最可能的反应机理及中间产物,首个H原子的反应需要最大的活化能(1.69 eV),是噻吩加氢脱硫的控速步骤.伴随H原子的不断加入,噻吩在γ-Mo2N(100)表面上优先生成―SH和丁二烯,随后―SH加氢生成H2S,丁二烯加氢饱和生成2-丁烯和丁烷.由于较弱的吸附,H2S、2-丁烯和丁烷很容易在γ-Mo2N(100)表面脱附成为产物. The hydrodesulfurization (HDS) of thiophene on an y-Mo2N(100) surface was investigated by density functional theory (DFT) and different configurations of thiophene on y-Mo2N(100) surface were considered. After geometric optimization, it was confirmed that the η5-Mo2N configuration was the most stable adsorption model with an adsorption energy of -0.56 eV, where thiophene absorbed on 4-fold hcp vacant sites parallel to the surface with the S atom bonded to a Mo2 atom. The stable coadsorption of H atoms and thiophene on hcp sites showed that the hcp site is the active site for thiophene HDS on y-Mo2N(100). A direct desulfurization reaction pathway in HDS of thiophene dominated the process on the y-Mo2N(100) surface, which could be divided into the removal of the S atom and the hydrogenation saturation of C4 species. To identify the intermediate products and the most probable reaction mechanism of thiophene HDS, a transition state search was carried out. The results indicated that the reaction of the first H atom required an activation energy of 1.69 eV, which was the rate-determining step in the HDS of thiophene. The thiol group (-SH) and butadiene were preferentially formed after hydrogenation of thiophene, and -SH detached from mercaptan was the intermediate of H2S. 2-Butene and butane were the products of the hydrogenation saturation of butadiene. H2S, 2-butene, and butane were easily desorbed from y-Mo2N(100) to give the products because of weak adsorption.
机构地区 太原理工大学
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2014年第11期2063-2070,共8页 Acta Physico-Chimica Sinica
基金 国家高技术研究发展计划项目(863)(2011AA05A204)资助~~
关键词 噻吩 氮化钼 加氢脱硫 反应机理 密度泛函理论 Thiophene Molybdenum nitride Hydrodesulfurization Reaction mechanism Density functional theory
  • 相关文献

参考文献4

二级参考文献261

  • 1靳广洲,樊秀菊,孙桂大,高俊斌,朱建华.钴掺杂对碳化钼催化噻吩加氢脱硫性能的影响[J].高等学校化学学报,2007,28(6):1169-1174. 被引量:5
  • 2Reilly,J.J.; Wiswall,R.H.Inorg.Chem.,1968,7:2254.
  • 3Zaluski,L.; Zaluska,A.; Strom-Olsen,J.O.J.Alloy.Compd.,1995,217:245.
  • 4Mulasa,G.; Delogub,F.; Cocco,G.J.Alloy.Compd.,2009,473:180.
  • 5Lee,H.Y.;Goo,N.H.;Jeong,W.T.;Lee,K.S.J.Alloy.Compd.,2000,313:258.
  • 6Janot,R.; Aymard,L.; Rougier,A.; Nazri,G.A.J.Phys.Chem.Solids,2004,65:529.
  • 7Janot,R.; Darok,X.; Rougier,A.; Aymard,L.; Nazri,G.A.J.Alloy.Compd.,2005,404:293.
  • 8Xue,J.S.; Li,G.X.; Hu,Y.Q.; Jun,D.; Wang,C.Q.; Hu,G.Y.J.Alloy.Compd.,2000,307:240.
  • 9Kohno,T.; Kanda,M.J.Electrochem.Soc.,1997,144:2384.
  • 10Kohno,T.; Yamamoto,M.; Kanda,M.J.Alloy.Compd.,1999,293:643.

共引文献59

同被引文献38

  • 1Kunming Dong Xiaoming Ma Hongbin Zhang Guodong Lin.Novel MWCNT-Support for Co-Mo Sulfide Catalyst in HDS of Thiophene and HDN of Pyrrole[J].Journal of Natural Gas Chemistry,2006,15(1):28-37. 被引量:6
  • 2Alkemade U., Dougan T.J. Catalysts in Petroleum Refining and Petrochemical Industries[ J]. In: Absi-Halabi M, et al eds. The Proceedings of the 2ha International Conference on Catalysts in Petroleum Refining and Petrochemical Industries, Kuwait, Amsterdam: Elsevier, 1996:76-94.
  • 3Biswajit S., Sonali S. Influence of different hydrocarbon components in fuel on the oxidative desulfurisation of thiophene : Deactivation of catalyst [ J ] Fuel, 2015,150:679-686.
  • 4Nag N.K., Sapre A.V., Broderick D.H., et al. Hydrodesulfurization of polycyclic aromatics catalyzed by sulfide CoO-MoO/A1203 : the relative reac- tivities, J. Catal. , 1979, 57(3):509-512.
  • 5Cabafias B. Baeza M.T. , Salgado S. et al. Oxidation Of hearocycles in the atmosphere: kinetic study of their reactions with NO3 radical[J]. Journal of Physical Chemistry A, 2004,108 (49) : 10818-10823.
  • 6Caba/tas B, Baeza M.T., Martin P., et al. Reaction of NO3 radical with some thiophenes: kinetic study and a correlation between rate constant and EHOMO [ J ]. International Journal of Chemical kinetics, 2006, 38 (9) : 570-576.
  • 7Liu B., Zhao Z., Wang D.X., et al. A theoretical study on the mechanism for thiophene hydrodesul furization over zeolite L-supported sulfided Co- Mo catalysts: Insight into the hydrodesulfufization over zeolite-based catalysts [ J ]. Computational and Theoretical Chemistry, 2015,1052:47-57.
  • 8Miyamoto A., Inomura M., Hattori A. A molecular orbital investigation of the mechanism of the nitric oxid e-ammonia reaction on a vanadium oxide catalyst[J]. J. Mol. Catal., 1982,16(16) :315-333.
  • 9Peda C. V., Jorge R., Rocfo C. Relationship between the hydrodesulfurization of thiophene, dibenzothio phene, and 4,6-dimethyl dibenzothio- phene and the local structure of Co in Co - Mo - S sites: Infrared study of adsorbed CO[J]. Journal of Catalysis, 2012,294:54-62.
  • 10Eduardo P. B., Alexandre B. F., Alano V. da S., et al. Incorporation of the precursors of Mo and Ni oxides directly into the reaction mixture of sol- gel preparedγ-A12 O3 -ZrO2 supports-Evaluation of the sulfided catalysts in the thiophene hydrodesulfurization[ J ]. Catalysis Today, 2014, 246:184 - 190.

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部