期刊文献+

基于共同评分项目数和用户兴趣的协同过滤推荐方法 被引量:5

Collaborative filtering recommendation based on number of common items and common rating interest of users
下载PDF
导出
摘要 在推荐系统中,为了在一定程度上减少用户评分数据稀疏对推荐效果的负面影响,提出了一种基于用户共同评分项目数和用户兴趣的协同过滤推荐算法。此算法将用户共同评分项目数和用户兴趣相似度相结合,使用户之间的相似度计算更加准确,为目标用户提供更好的推荐结果。仿真实验结果表明:所提算法比基于Pearson相似度计算方法的算法推荐效果更优,具有更小的平均绝对误差(MAE),表明了其有效性和可行性。 In order to reduce the negative impacts of sparse data, a new collaborative filtering recommendation algorithm was put forward based on the number of common rating items among users and the similarity of user interests. The similarity calculations were made to be more credible by combing the number of common rating items among users with the similarity of user interests, so as to provide better recommendation results for the target user. Compared with the method based on Pearson similarity, the new algorithm provides better recommendation results with smaller Mean Absolute Error( MAE). In conclusion,the new algorithm is effective and feasible.
出处 《计算机应用》 CSCD 北大核心 2014年第11期3140-3143,共4页 journal of Computer Applications
关键词 稀疏数据 共同评分项目数 用户兴趣 协同过滤 Pearson相似度 sparse data number of common rating items user interest collaborative filtering Pearson similarity
  • 相关文献

参考文献12

  • 1张兴华.搜索引擎技术及研究[J].现代情报,2004,24(4):142-145. 被引量:35
  • 2ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender system: a survey of the state-of-the-art and possible extensions [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6):734-749.
  • 3LI Y, WU C, LAI C. A social recommender mechanism for e-com-merce: Combining similarity, trust and relationship [J]. Decision Support Systems, 2013, 55(3):740-752.
  • 4HERLOCKER L J, KONSTAN A J, RIEDL T J. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms [J]. Information Retrieval, 2002, 5(4):287-310.
  • 5BOBADILLA J, ORTEGA F, HERNANDO A, et al. A collaborative filtering approach to mitigate the new user cold start problem [J]. Knowledge-Based Systems, 2012, 26: 225-238.
  • 6BOBADILLA J, ORTEGA F, HERNANDO A, et al. Improving collaborative filtering recommender system results and performance using genetic algorithms [J]. Knowledge-Based Systems, 2011, 24: 1310-1316.
  • 7MASSA P, AVESANI P. Trust-aware collaborative filtering for recommender systems[C] // Proceedings of the 2004 OTM Confederated International Conferences on the Move to Meaningful Internet Systems: CoopIS, DOA, and ODBASE, LNCS 3290. Berlin: Springer-Verlag, 2004: 492-508.
  • 8MASSA P, AVESANI P. Trust metrics on controversial users: balancing between tyranny of the majority and echo chambers [J]. International Journal on Semantic Web and Information Systems, 2007, 3(1): 39-64.
  • 9ZHAO X, NIU Z, CHEN W. Interest before liking: two-step recommendation approaches [J]. Knowledge-Based Systems, 2013, 48: 46-56.
  • 10GAN M, JIANG R. Improving accuracy and diversity of personalized recommendation through power law adjustments of user similarities [J]. Decision Support Systems, 2013, 55(3): 811-821.

二级参考文献6

共引文献35

同被引文献42

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部