期刊文献+

基于类标记扩展的半监督网络流量特征选择算法 被引量:1

Semi-supervised network traffic feature selection algorithm based on label extension
下载PDF
导出
摘要 针对网络流量特征选择过程中存在的样本标记瓶颈问题,以及现有半监督方法无法选择强相关的特征的不足,提出一种基于类标记扩展的多类半监督特征选择(SFSEL)算法。该算法首先从少量的标记样本出发,通过K-means算法对未标记样本进行类标记扩展;然后结合基于双重正则的支持向量机(MDrSVM)算法实现多类数据的特征选择。与半监督特征选择算法Spectral、PCFRSC和SEFR在Moore数据集进行了对比实验,SFSEL得到的分类准确率和召回率明显都要高于其他算法,而且SFSEL算法选择的特征个数明显少于其他算法。实验结果表明:SFSEL算法能够有效地提高所选特征的相关性,获取更好的网络流量分类性能。 Aiming at the problem of sample labeling in network traffic feature selection, and the deficiency of traditional semi-supervised methods which can not select a strong correlation feature set, a Semi-supervised Feature Selection based on Extension of Label( SFSEL) algorithm was proposed. The model started from a small number of labeled samples, and the labels of unlabeled samples were extended by K-means algorithm, then MDrSVM( Multi-class Doubly regularized Support Vector Machine) algorithm was combined to achieve feature selection of multi-class network data. Comparison experiments with other semi-supervised algorithms including Spectral, PCFRSC and SEFR on Moore network data set were given, where SFSEL got higher classification accuracy and recall with fewer selection features. The experimental results show that the proposed algorithm has a better classification performance with selecting a strong correlation feature set of network traffic.
出处 《计算机应用》 CSCD 北大核心 2014年第11期3206-3209,共4页 journal of Computer Applications
基金 国家安全重大基础研究项目(613148)
关键词 网络流量 半监督 特征选择 类标记扩展 K-MEANS聚类 network traffic semi-supervised feature selection label extension K-means clustering
  • 相关文献

参考文献12

  • 1ZHANG H, LU G, QASSRAWI M T, et al. Feature selection for optimizing traffic classification [J]. Computer Communications, 2012, 35(12): 1457-1471.
  • 2BELLAL F, ELGHAZEL H, AUSSEM A. A semi-supervised feature ranking method with ensemble learning [J]. Pattern Recognition Letters, 2012, 33(9): 1426-1433.
  • 3SEBASTIAN M, JUAN P, RICHARD W, et al. Feature selection for support vector machines via mixed integer linear programming [J]. Information Sciences, 2014, 279(20): 163-175.
  • 4王涛,余顺争.基于机器学习的网络流量分类研究进展[J].小型微型计算机系统,2012,33(5):1034-1040. 被引量:23
  • 5ZHAO Z, LIU H. Semi-supervised feature selection via spectral analysis [C] // Proceedings of the 2007 SIAM International Conference on Data Mining. Minneapolis: SDM Press, 2007: 641-646.
  • 6REN J, QIU Z, FAN W, et al. Forward semi-supervised feature selection [EB/OL].[2013-10-10]. http://www.weifan.info/PAPERS/PAKDD08forward.pdf.
  • 7王博,贾焰,田李.基于类标号扩展的半监督特征选择算法[J].计算机科学,2009,36(10):189-191. 被引量:6
  • 8李平红,王勇,陶晓玲.基于成对约束扩展的半监督网络流量特征选择算法[J].传感器与微系统,2013,32(5):146-149. 被引量:5
  • 9BELLAL F, ELGHAZEL H, AUSSEM A. A semi-supervised feature ranking method with ensemble learning [J]. Journal of Pattern Recognition Letters, 2012, 33(10):1426-1433.
  • 10DAI K, YU H Y, LI Q. A semisupervised feature selection with support vector machine [J]. Journal of Applied Mathematics, 2013, 2013: Article ID 416320.

二级参考文献28

  • 1Yang K, Yoon H, Shahabi C. A Supervised Feature Subset Selection Technique for Multivariate Time Series.
  • 2Liu H, Yu L. Toward Integrating Feature Selection Algorithms for Classification and Clustering [J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(4) : 491-502.
  • 3Zhao Zheng, Liu Huan. Searching for Interacting Features[C]// ijcai 2007.
  • 4Seeger M. Leaming with labeled and unlabeled data[R]. 2000.
  • 5Houle M E. Clustering without data : the GreedyRSC heuristic [C]//Proc. International Workshop on Data-Mining and Statistical Science( DMSS 2006). Sapporo, Japan, September 2006: 62-69.
  • 6Houle M E, Grira N. A Correlation - Based Model for Unsupervised Feature Selection[C],//CIKM'07.
  • 7Izutani A , Uehara K . A Modeling Approach Using Multiple Graphs for Semi-Supervised Learning [J]. Discovery Science, 2008: 296-307.
  • 8Nakatani Y, Zhu K, Uehara K. Semisupervised learning using feature selection based on maximum density subgraphs[J]. Systems and Computers in Japan(SCJAPAN) ,2007,38(9) ,32-43.
  • 9Ren Jiangtao, Qiu Zhengyuan, Fan Wei, et al. Forward Semi-Supervised Feature Selection[C]//PAKDD08. 2008.
  • 10Zhao Z, Liu H. Semi-supervised Feature Selection via Spectral Analysis[C]//SIAM International Conference on Data Mining (SDM-07). 2007.

共引文献29

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部