期刊文献+

基于可变步长关键帧提取的网络视频拷贝检索 被引量:1

Web video copy detection based on variable-length step key frame selection
下载PDF
导出
摘要 为快速有效地检测网络中的拷贝视频,针对现有关键帧提取算法时间复杂度高、关键帧不具有代表性的缺点,提出一种可变步长提取关键帧提取方法。根据视频变化连续性特点,用相似的两近邻帧代表它们之间的视频片段;该方法首先选取关键帧中的核心区域与受影响较小的边缘区域,对不同的区域取权值并通过转换距离度量分块灰度顺序特征(OM)来判断两帧间相似度;然后利用滑动窗口来查找最大相似匹配,从而检测出查询视频中的拷贝片段。在网络数据和MUSCLE-VCD-2007数据上的实验结果表明,该方法相对于现有的基于OM特征拷贝检测法而言,其鲁棒性更强,检测效率更高。 To weaken the influence of unrepresentative frames and time complexity on detecting the copy of the video on the network, a quick and efficient variable-length step algorithm was proposed to select the most representative key frames.According to the characteristics of the video continuous change, the highly similar adjacent frames could be used to replace the corresponding video between them. Firstly, the algorithm selected core region and less affected edge region of key frame and allocated different areas with different weights so as to use the Ordinal Measures( OM) transformation distance measurement to judge the similarity between two frames. Then the sliding window was used to find the most similar match to detect the copy clips of query videos. The experimental results on actual network and MUSCLE-VCD-2007 dataset show that the proposed algorithm has stronger robustness and higher detection efficiency compared with the existing algorithms of copy detection feature measure based on OM.
出处 《计算机应用》 CSCD 北大核心 2014年第11期3295-3299,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61373055)
关键词 视频拷贝检索 可变步长 权值 帧间相似度 滑动窗口 最大系列匹配 video copy retrieval variable-length step weight similarity between two frames sliding window maximum sequence matching
  • 相关文献

参考文献16

  • 1ZHOU X, CHEN L, ZHOU X. Structure tensor series-based large scale near-duplicate video retrieval[J]. IEEE Transactions on multimedia, 2012, 4(14): 1220-1233.
  • 2KANG M, HUANG X, YANG L. Video clip retrieval based on incidence matrix and dynamic-step sliding-window[C] // ICCASM 2010: Proceedings of the 2010 International Conference on Computer Application and System Modeling. Piscataway: IEEE Press,2010: 256-259.
  • 3吴潇,高科,郭俊波,李锦涛,张勇东.基于多特征匹配的视频拷贝检测算法[J].计算机辅助设计与图形学学报,2010,22(11):1856-1865. 被引量:5
  • 4LE D D, SATOH S. National institute of informatics Japan at TRECVID 2007: BBC rushes summarization[C] // Proceedings of the 2007 International Workshop on TRECVID Video Summarization. New York: ACM Press, 2007: 70-73.
  • 5林莹,杨扬,凌康,肖金伟,武港山.多特征综合的视频拷贝检测[J].中国图象图形学报,2013,18(5):591-599. 被引量:5
  • 6BAY H, TUYTELAARS T, van GOOL L. SURF: speeded up robust features[C] // Proceedings of the 9th European Conference on Computer Vision, LNCS 3951. Berlin: Springer-Verlag,2006: 404-417.
  • 7UCHIDA Y, AGRAWAL M, SAKAZAWA S. Accurate content-based video copy detection with efficient feature indexing[C] // Proceedings of the 1st ACM International Conference on Multimedia Retrieval. New York: ACM Press, 2011: 19-26.
  • 8HAMPAPUR A, HYUN K, BOLLE R M. Comparison of sequence matching techniques for video copy detection[C] // Proceedings of SPIE 4676. Bellingham: SPIE Press,2001: 194-201.
  • 9KIM C, VASUDEV B. Spatiotemporal sequence matching for efficient video copy detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15(1): 127-132.
  • 10张勇东,张冬明,郭俊波,唐胜.压缩域快速视频拷贝检测算法[J].通信学报,2009,30(3):135-140. 被引量:9

二级参考文献78

  • 1刘连山,李人厚,高琦.视频数字水印技术综述[J].计算机辅助设计与图形学学报,2005,17(3):379-386. 被引量:19
  • 2Guidelines for the TRECVID 2008 CD task evaluation[EB/OL]. http://www-nlpir.nist.gov/projects/tv2008/tv2008.html, 2008.
  • 3HSU W, CHUA T S, PUNG H K. An integrated color-spatial approach to content-based image retrieval[A]. Proceedings of ACM Multimedia, ACM Press, San Francisco, CA, 1995.305-313.
  • 4WU X, ZHANG Y D, TANG S, et al. A hierarchical scheme for rapid video copy detection[A]. Proceedings of IEEE International Workshop on Computer Vision Applications (WACV)[C]. Copper Mountain, Colorado, USA, 2008.
  • 5HUA X S, CHEN X, ZHANG H J. Robust video signature based on ordinal measure[A]. Proceedings of International Conference on Image Processing[C]. Singapore, 2004.
  • 6KIM C, VASUDEV B. Spatiotemporal sequence matching for efficient video copy detection[J]. IEEE Trans on Circuits and Systems for Video Technology, 2005, 15(1):127-132.
  • 7LAW-TO J, CHEN L, JOLY A, et al. Video copy detection: a comparative study[A]. Proceedings of CIVR'07[C]. Amsterdam, The Netherlands, 2007.371-378.
  • 8JOLY A, BUISSON O, FRELICOT C. Content-based copy retrieval using distortion-based probabilistic similarity search[J]. IEEE Trans on Multimedia, 2007, 9(2):293-306.
  • 9WU X, HAUPTMANN A G, NGO C W. Practical elimination of near-duplicates from web video search[A]. Proceedings of ACM International Conference on Multimedia, Augsburg, Germany, 2007. 218-227.
  • 10Coskun B,Sanku B,and Memon N.Spatio-temporal transform-based video hashing[J].IEEE Transactions on Multimedia,2006,8(6):1190-1208.

共引文献25

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部