期刊文献+

粒计算求解复杂网络最大流的研究 被引量:2

Research on Solving Maximum Flow Problem of the Complex Network with Granular Computing
下载PDF
导出
摘要 网络最大流问题是经典的组合优化问题,随着网络规模的增加,提高算法效率成为解决问题的关键.为了降低求解大规模网络最大流的计算量,本文模拟人类思维逐步求解复杂问题的思想,提出一种基于粒计算求解网络最大流问题的简单方法.本文首先将大规模复杂网络粒化为多个规模较小的子网络,再分别求解各子网络最大流,最后将子网络最大流合成得到原网络最大流.本文方法有效地降低了计算的复杂性,为在大规模复杂网络中快速获取最大流提供了方便,并给出一个解决最大流问题的新思路.不同网络上测试的实验结果显示,最大流的近似解误差可控制在1%左右,而平均运行时间只有经典算法(Ford-Fulkerson算法)运行时间的10%,表明本文方法的有效性. Maximum flow problem is a classical combinational optimization problem. With the growing of the network scale, it is the key issue to get the maximum flow efficiently. For a large-scale complex network, a novel method for getting its maximum flow based on granular computing is proposed in this paper. Firstly, we granulate the complex network into some sub-networks. Then we compute the maximum flow for each sub-network. Finally, we compose the maximum flow of each sub-network, and regard it as the estimated maximum flow of the original network. The experimental results on different networks show the efficiency of the proposed method. The maximum flow error is only about 1%. At the same time,the running time of our method is 10% of the classical algo- rithm( the Ford-Fulkerson algorithm) averagely.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第11期2450-2453,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61073117 61175046)资助 安徽省自然科学基金项目(11040606M)资助 安徽省高等学校省级自然科学研究项目(KJ2013A016)资助 安徽大学研究生学术创新研究项目(01001770-10117700163)资助 安徽大学"211工程"三期第三批杰出青年科学研究培育基金项目(KJQN1116)资助
关键词 最大流 复杂网络 粒计算 粒化 合成 maximum flow complex network granular computing granulation composition
  • 相关文献

参考文献6

二级参考文献184

  • 1LingZhang,BoZhang.A Quotient Space Approximation Model of Multiresolution Signal Analysis[J].Journal of Computer Science & Technology,2005,20(1):90-94. 被引量:19
  • 2WANG Guo-yin,HU Feng,HUANG Hai,WU Yu.A Granular Computing Model Based on Tolerance relation[J].The Journal of China Universities of Posts and Telecommunications,2005,12(3):86-90. 被引量:9
  • 3Yiyu,(Y.Y.),Yao.Three Perspectives of Granular Computing[J].南昌工程学院学报,2006,25(2):16-21. 被引量:19
  • 4Yao Y Y. On generalizing rough set theory//Proceedings of the 9th International Conference (RSFDGrC). Chongqing, China, Springer, 2003: 44-51.
  • 5Yao Y Y. Information granulation and rough set approxima tion. International Journal of Intelligent Systems, 2001, 16 (1): 87-104.
  • 6Yao Y Y, Zhou B. A logic language of granular computing// Proceedings of the 6th IEEE International Conference on Cognitive Informatics. Beijing, China, 2006:178-185.
  • 7Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning About Data. Dordrecht: Kluwer Academic Publishers, 1991.
  • 8Ganter B, Wille R. Formal Concept Analysis: Mathematical Foundations. New York: Springer Verlag, 1999.
  • 9Wille R. Restructuring lattice theory: An approach based on hierarchies of eoncepts//Ivan Rival. Ordered Sets. Dordecht Boston: Reidel, 1982:445-470.
  • 10Doignon J P, Falmagne J C. Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 1985, 23(2): 175-196.

共引文献294

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部