期刊文献+

多示例学习的包层次覆盖k近邻算法

Multi-instance Learning Bag-level Covering-kNN Algorithm
下载PDF
导出
摘要 多示例学习是一种新型的机器学习框架,正包中大量的噪声使多示例数据集具有很大的歧义性.为了排除多示例数据集正包中大量的假正例,提高分类精度,结合邻域覆盖算法,提出一个新的多示例包层次覆盖k近邻算法.覆盖算法的学习结果是一系列的球形邻域,在每一个球形邻域中只含有同类样本,本文利用的覆盖算法的这一特性重新组织多示例数据集的包结构.概括的说,为了排除正包中大量的假正例,首先对原有的多示例包结构进行重新构造,使用覆盖算法生成的球形邻域做为新的包结构,从而提高多示例样本在新的特征空间中的可分离性.然后,使用包层次的k近邻算法排除正包中大量的噪声并预测测试包的类别.实验表明,多示例学习的包层次覆盖k近邻算法具有很好的性能. Multi-instance learning is a new framework in machine learning. An extensive number of noises in the positive bags is the inherent difficulty of multi-instance learning. In order to improve the classification accuracy, this paper puts forward a novel multi-in- stance learning bag-level Covering-kNN algorithm to exclude the noises in multi-instance data set. The learning results of Covering al- gorithm is a set of sphere neighbors and each sphere neighbor only contains patterns belong to the same class. This feature help us re- organize the structure of bags in multi-instance data set. Generally speaking, in order to exclude false positive instances in the positive bags, first, we reconstruct the structure of multi-instance data set by treating the sphere neighbors obtained using Covering algorithm as the new structure of bags. Thus, improving the separable of multi-instance samples in the new feature space. Then, the bag-level kNN algorithm is utilized to exclude the noises in positive bags and predict the labels of test bags. The experiments demonstrate the effectiveness of the proposed multi-instance bag-level Covering-kNN algorithm.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第11期2511-2514,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61073117 61175046)资助 安徽省教育厅基金项目(kJ2013A016)资助 安徽大学研究生学术创新项目(10117700183)资助
关键词 机器学习 多示例学习 覆盖算法 K近邻算法 machine learning multi-instance learning covering algorithm kNN algorithm
  • 相关文献

参考文献18

  • 1Maron O. Learning from ambiguity [ D ]. Massachusetts Institute of Technology, USA, 1998.
  • 2Fu Z Y, Robles-Kelly A, Zhou J. MILIS : multiple instance learning with instance selection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,USA ,2011,33 ( 5 ) :958-977.
  • 3Nguyen D T, Nguyen C D, Hargraves R, et al. mi-DS : multiple-in- stance learning algorithm[ J]. IEEE Transactions on Systems, Man, and Cybernetics Society ,2013,43 ( 1 ) : 143-154.
  • 4Babenko B ,Yang M H,Belongie S. Robust object tracking with on- line multiple instance learning [ J ]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence,2011,33 (8) : 1619-1632.
  • 5Xie Y, Qu Y Y, Li C H, et al. Online multiple instance gradient fea- ture selection for robust visual tracking[ J]. Pattern Recognition Let- ters, 2012,33 ( 9 ) : 1075-1082.
  • 6Qi Z Q,Xu Y T,Wang L S,et al. Online multiple instance boosting for object detection[ J ]. Neurocomputing ,2011,74 (10) : 1769-1775.
  • 7Bellare M, Ristenpart T, Tessaro S. Multi-instance security and its application to password-based cryptography[ J]. Advances in Cryp- tology -CRYPTO, 2012 : 312 -329.
  • 8Dietterich T G,Lathrop R H,Lozano-P&ez T. Solving the multiple instance problem with axis-parallel rectangles [ J ]. Artificial Intelli- gence, 1997,89( 1 ) :31-71.
  • 9Maron O, Lozano-Ptrez T. A framework for multiple-instance learn- ing[ J]. Advances in Neural Information Processing Systems, 1998, 10:570-576.
  • 10Zhang Q, Goldman S A, et al. EM-DD: an improved multiple-in- stance learning technique[ J]. Advances in Neural Information Pro- cessing Systems,2001,14 ( 2022 ) : 1073-1080.

二级参考文献1

共引文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部