期刊文献+

云数据中心高能效的虚拟机放置算法 被引量:8

An Energy-efficient Virtual Machine Placement Algorithm in Cloud Data Center
下载PDF
导出
摘要 面对云数据中心高能耗的挑战,以节能为目标的虚拟机放置算法成为研究热点.现有研究大多只考虑CPU一种系统资源对能效的影响,并且多采用基于贪心算法的传统启发式算法进行虚拟机放置.已有研究开始考虑多种系统资源对能效的影响,并且提出了多资源的能效模型,但是在多资源能效模型下虚拟机放置算法的研究还未引起关注.本文根据多资源的能效模型提出了基于粒子群算法的高能效虚拟机放置算法,包括采用首次适应算法生成粒子,定义粒子个体最优解和全局最优解的信任度指导粒子进化,根据多资源能效模型定义粒子群的适应度函数并以此来评价粒子.仿真实验结果表明,与传统启发式算法相比较,该算法使虚拟机的放置结果更接近系统能效的最佳状态,同时也有效地提高了系统资源的利用率. Facing the challenge of high energy consumption in cloud data center, virtual machine placement algorithms aiming at ener- gy efficiency become a research hotspot. Previous investigations mostly have focused on the effects of CPU on energy efficiency. In addition these studies exclusively use traditional heuristic algorithms based on greedy method to place virtual machines. Some investi- gations have taken multiple system resource related factors into consideration for energy efficiency, and a multi-resource efficiency model has also been proposed. However, the study of virtual machine placement algorithm based on the multi-resource efficiency mod- el has not caused concern. In this paper, we propose an energy-efficient virtual machine placement algorithm for multi-resource energy efficiency. The method is developed based on particle swarm optimization algorithm. It uses First Fit algorithm to generate particles, defines the trust for the individual optimal solution and the global optimal solution of particles to guide particles' evolution, defines fit- ness function of Particle Swarm Optimizer,and evaluates particles according to the energy efficiency model. Simulation experimental results find that, compared to traditional heuristic algorithms, the current algorithm results in a virtual machine placement that approa- ches the best for energy efficiency. Moreover, it improves significantly the utilization of system resources.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第11期2543-2547,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(21203259)资助 重庆市教委科学技术研究项目(KJ130514)资助 重庆邮电大学自然科学基金项目(A2012-31)资助
关键词 虚拟机放置 粒子群算法 能效 资源利用率 云数据中心 virtual machine placement particle swarm algorithm energy efficiency utilization of resource cloud data center
  • 相关文献

参考文献17

  • 1Armbmst M, Fox A, Griffith R, et al. A view of cloud computing[J]. Communications of the Association for Computing Machiner- y,2010,53 (4) :50-58.
  • 2陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. 被引量:1311
  • 3Buyya R, Yeo C S, Venugopal S, et al. Cloud computing and emer- ging 1T platforms: Vision, hype, and reality for delivering compu- ting as the 5th utility [ J]. Future Generation Computer Systems, 2009,25 (6) :599-616.
  • 4Zhu X,Young D,Watson B J,et al. 1000 islands:an integrated ap- proach to resource management for virtualized data centers [ J ]. Cluster Computing,2009,12 ( 1 ) :45-57.
  • 5李强,郝沁汾,肖利民,李舟军.云计算中虚拟机放置的自适应管理与多目标优化[J].计算机学报,2011,34(12):2253-2264. 被引量:123
  • 6Beloglazov A,Ahawajy J, Buyya R. Energy-aware resource alloca- tion heuristics for efficient management of data centers for cloud computing [ J ]. Future Cncration Computer Systems, 2012, 28 (5) :755-768.
  • 7Liu Zhi-piao, Wang Shang-guang, Sun Qi-bo, et al. Energy-aware intelligent optimization algorithm for virtual machine replacement [ J ]. Journal of Huazhong University of Science & Technology ( Natural Science Edition), 2012,12 ( 40 ) : 398 -402.
  • 8Srikantaiah S, Kansal A, Zhao F. Energy aware consolidation for cloud computing[ C]. Proceedings of the 2008 Conference on Pow- er Aware Computing and Systems, USENIX Association,2008.
  • 9Ajiro Y, Tanaka A. Improving packing algorithms for server consol- idation[ C]. Proceedings of International Conference for the Com- putere Measurement Group (CMG) ,2007:399406.
  • 10Gupta R,Bose S K,Sundarrajan S,et al. A two stage heuristic al- gorithm for solving the server consolidation problem with item-item and bin-item incompatibility constraints [ C ]. Proceedings of the 2008 Institute of Electrical and Electronics Engineers International Conference on Services Computing (SCC'08) ,2008,2:39-46.

二级参考文献67

  • 1Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 2Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 3Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 4Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 5Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 6Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 7Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 8Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.
  • 9Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350.
  • 10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 205-218.

共引文献1419

同被引文献27

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部